CHRIST (Deemed to University), Bangalore

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

School of Commerce, Finance and Accountancy






Syllabus for
BTech (Electronics and Computer Engineering)
Academic Year  (2024)

 

BS351 - ENGINEERING BIOLOGY LABORATORY (2023 Batch)

Total Teaching Hours for Semester:30
No of Lecture Hours/Week:2
Max Marks:50
Credits:1

Course Objectives/Course Description

 
  • To understand Biological concepts from an engineering perspective

Learning Outcome

CO1: Examine the various applications of bioengineering and using common tool boxes for analysing medical information.

Unit-1
Teaching Hours:30
List of expriments
 
  • Blood Pressure Measurement using Arduino
  • Measuring HRV using the data from pulse measurement in Matlab.
  • Measure heart rate and SPO2 with Arduino
  • Measuring BMI, heart rate, SPO2, HRV using MATLAB and indicating health of person.
  • Analyzing breast cancer, EEG, ECG and CT images using MATLAB from online data sources and detecting irregularties (arrhythmia, tumor, cancer, epilepsy).
  • Analyzing force developed in muscles when performing any given task (to move servo motor and subsequently robotic arm).
  • Measuring water content in given soil using temperature, pH using Arduino.
  • IR thermal imaging to determine effect of mobile radiation.
  • Synthesis of biopolymers from starch.
Unit-1
Teaching Hours:30
List of expriments
 
  • Blood Pressure Measurement using Arduino
  • Measuring HRV using the data from pulse measurement in Matlab.
  • Measure heart rate and SPO2 with Arduino
  • Measuring BMI, heart rate, SPO2, HRV using MATLAB and indicating health of person.
  • Analyzing breast cancer, EEG, ECG and CT images using MATLAB from online data sources and detecting irregularties (arrhythmia, tumor, cancer, epilepsy).
  • Analyzing force developed in muscles when performing any given task (to move servo motor and subsequently robotic arm).
  • Measuring water content in given soil using temperature, pH using Arduino.
  • IR thermal imaging to determine effect of mobile radiation.
  • Synthesis of biopolymers from starch.
Unit-1
Teaching Hours:30
List of expriments
 
  • Blood Pressure Measurement using Arduino
  • Measuring HRV using the data from pulse measurement in Matlab.
  • Measure heart rate and SPO2 with Arduino
  • Measuring BMI, heart rate, SPO2, HRV using MATLAB and indicating health of person.
  • Analyzing breast cancer, EEG, ECG and CT images using MATLAB from online data sources and detecting irregularties (arrhythmia, tumor, cancer, epilepsy).
  • Analyzing force developed in muscles when performing any given task (to move servo motor and subsequently robotic arm).
  • Measuring water content in given soil using temperature, pH using Arduino.
  • IR thermal imaging to determine effect of mobile radiation.
  • Synthesis of biopolymers from starch.
Unit-1
Teaching Hours:30
List of expriments
 
  • Blood Pressure Measurement using Arduino
  • Measuring HRV using the data from pulse measurement in Matlab.
  • Measure heart rate and SPO2 with Arduino
  • Measuring BMI, heart rate, SPO2, HRV using MATLAB and indicating health of person.
  • Analyzing breast cancer, EEG, ECG and CT images using MATLAB from online data sources and detecting irregularties (arrhythmia, tumor, cancer, epilepsy).
  • Analyzing force developed in muscles when performing any given task (to move servo motor and subsequently robotic arm).
  • Measuring water content in given soil using temperature, pH using Arduino.
  • IR thermal imaging to determine effect of mobile radiation.
  • Synthesis of biopolymers from starch.
Unit-1
Teaching Hours:30
List of expriments
 
  • Blood Pressure Measurement using Arduino
  • Measuring HRV using the data from pulse measurement in Matlab.
  • Measure heart rate and SPO2 with Arduino
  • Measuring BMI, heart rate, SPO2, HRV using MATLAB and indicating health of person.
  • Analyzing breast cancer, EEG, ECG and CT images using MATLAB from online data sources and detecting irregularties (arrhythmia, tumor, cancer, epilepsy).
  • Analyzing force developed in muscles when performing any given task (to move servo motor and subsequently robotic arm).
  • Measuring water content in given soil using temperature, pH using Arduino.
  • IR thermal imaging to determine effect of mobile radiation.
  • Synthesis of biopolymers from starch.
Unit-1
Teaching Hours:30
List of expriments
 
  • Blood Pressure Measurement using Arduino
  • Measuring HRV using the data from pulse measurement in Matlab.
  • Measure heart rate and SPO2 with Arduino
  • Measuring BMI, heart rate, SPO2, HRV using MATLAB and indicating health of person.
  • Analyzing breast cancer, EEG, ECG and CT images using MATLAB from online data sources and detecting irregularties (arrhythmia, tumor, cancer, epilepsy).
  • Analyzing force developed in muscles when performing any given task (to move servo motor and subsequently robotic arm).
  • Measuring water content in given soil using temperature, pH using Arduino.
  • IR thermal imaging to determine effect of mobile radiation.
  • Synthesis of biopolymers from starch.
Text Books And Reference Books:

Nil

Essential Reading / Recommended Reading

Nil

Evaluation Pattern

Observation - 10 marks

Record - 10 marks

Conduction - 30 marks

CE351 - SUSTAINABLE GREEN TECHNOLOGY (2023 Batch)

Total Teaching Hours for Semester:30
No of Lecture Hours/Week:2
Max Marks:50
Credits:2

Course Objectives/Course Description

 

This course comprehensively deals with interdisciplinary engineering and design processes to achieve sustainability in the area of renewable energy, resources and waste management through experiential learning

Learning Outcome

CO1: Demonstrate a clear understanding and application of sustainability principles to develop and implement green technologies.

CO2: Develop sustainable solutions to solve pressing issues in the area of Energy, Waste and Resource management.

Unit-1
Teaching Hours:30
Real time projects
 

Project based on solar energy

Analysis and Design of a Solar PV Plant for Hostel/Village at University X/Location

 

Projects based on water and other resources

Conjunctive user planning of water resource(integrated surface and ground water management) for village
Mapping of resources using Geospatial techniques

 

Projects based on waste management

Anaerobic codigestion of organic solid waste for volume reduction, phase conversion and concurrent energy production in an village.
Upcycling of commingled plastic waste generated in village , thereby creating entrepreneurship opportunities.
Evaluation of calorific value thereby valorisation of agro based waste  in rural area for entrepreneurship opportunities.
Unit-1
Teaching Hours:30
Real time projects
 

Project based on solar energy

Analysis and Design of a Solar PV Plant for Hostel/Village at University X/Location

 

Projects based on water and other resources

Conjunctive user planning of water resource(integrated surface and ground water management) for village
Mapping of resources using Geospatial techniques

 

Projects based on waste management

Anaerobic codigestion of organic solid waste for volume reduction, phase conversion and concurrent energy production in an village.
Upcycling of commingled plastic waste generated in village , thereby creating entrepreneurship opportunities.
Evaluation of calorific value thereby valorisation of agro based waste  in rural area for entrepreneurship opportunities.
Unit-1
Teaching Hours:30
Real time projects
 

Project based on solar energy

Analysis and Design of a Solar PV Plant for Hostel/Village at University X/Location

 

Projects based on water and other resources

Conjunctive user planning of water resource(integrated surface and ground water management) for village
Mapping of resources using Geospatial techniques

 

Projects based on waste management

Anaerobic codigestion of organic solid waste for volume reduction, phase conversion and concurrent energy production in an village.
Upcycling of commingled plastic waste generated in village , thereby creating entrepreneurship opportunities.
Evaluation of calorific value thereby valorisation of agro based waste  in rural area for entrepreneurship opportunities.
Unit-1
Teaching Hours:30
Real time projects
 

Project based on solar energy

Analysis and Design of a Solar PV Plant for Hostel/Village at University X/Location

 

Projects based on water and other resources

Conjunctive user planning of water resource(integrated surface and ground water management) for village
Mapping of resources using Geospatial techniques

 

Projects based on waste management

Anaerobic codigestion of organic solid waste for volume reduction, phase conversion and concurrent energy production in an village.
Upcycling of commingled plastic waste generated in village , thereby creating entrepreneurship opportunities.
Evaluation of calorific value thereby valorisation of agro based waste  in rural area for entrepreneurship opportunities.
Unit-1
Teaching Hours:30
Real time projects
 

Project based on solar energy

Analysis and Design of a Solar PV Plant for Hostel/Village at University X/Location

 

Projects based on water and other resources

Conjunctive user planning of water resource(integrated surface and ground water management) for village
Mapping of resources using Geospatial techniques

 

Projects based on waste management

Anaerobic codigestion of organic solid waste for volume reduction, phase conversion and concurrent energy production in an village.
Upcycling of commingled plastic waste generated in village , thereby creating entrepreneurship opportunities.
Evaluation of calorific value thereby valorisation of agro based waste  in rural area for entrepreneurship opportunities.
Unit-1
Teaching Hours:30
Real time projects
 

Project based on solar energy

Analysis and Design of a Solar PV Plant for Hostel/Village at University X/Location

 

Projects based on water and other resources

Conjunctive user planning of water resource(integrated surface and ground water management) for village
Mapping of resources using Geospatial techniques

 

Projects based on waste management

Anaerobic codigestion of organic solid waste for volume reduction, phase conversion and concurrent energy production in an village.
Upcycling of commingled plastic waste generated in village , thereby creating entrepreneurship opportunities.
Evaluation of calorific value thereby valorisation of agro based waste  in rural area for entrepreneurship opportunities.
Unit-1
Teaching Hours:30
Real time projects
 

Project based on solar energy

Analysis and Design of a Solar PV Plant for Hostel/Village at University X/Location

 

Projects based on water and other resources

Conjunctive user planning of water resource(integrated surface and ground water management) for village
Mapping of resources using Geospatial techniques

 

Projects based on waste management

Anaerobic codigestion of organic solid waste for volume reduction, phase conversion and concurrent energy production in an village.
Upcycling of commingled plastic waste generated in village , thereby creating entrepreneurship opportunities.
Evaluation of calorific value thereby valorisation of agro based waste  in rural area for entrepreneurship opportunities.
Unit-1
Teaching Hours:30
Real time projects
 

Project based on solar energy

Analysis and Design of a Solar PV Plant for Hostel/Village at University X/Location

 

Projects based on water and other resources

Conjunctive user planning of water resource(integrated surface and ground water management) for village
Mapping of resources using Geospatial techniques

 

Projects based on waste management

Anaerobic codigestion of organic solid waste for volume reduction, phase conversion and concurrent energy production in an village.
Upcycling of commingled plastic waste generated in village , thereby creating entrepreneurship opportunities.
Evaluation of calorific value thereby valorisation of agro based waste  in rural area for entrepreneurship opportunities.
Text Books And Reference Books:

1.Rogers, Peter P., Kazi F. Jalal, and John A. Boyd. "An introduction to sustainable development." (2012).

2.Kerr, Julie. Introduction to energy and climate: Developing a sustainable environment. CRC Press, 2017.

Essential Reading / Recommended Reading

Based on alloted  projects  students need to refer respective journal publications reference materials.

Evaluation Pattern

Students would be assessed both continously and stage wise

Students would be assessed  after every engagement for submissions and progress achived with respect to project- 50 marks

Students projects at the end of semester  would be assessed for  50 marks by panel constituted by the department- 50 marks

CY321 - CYBER SECURITY (2023 Batch)

Total Teaching Hours for Semester:30
No of Lecture Hours/Week:2
Max Marks:0
Credits:0

Course Objectives/Course Description

 

This mandatory course is aimed at providing a comprehensive overview of the different facets of Cyber Security.  In addition, the course will detail into specifics of Cyber Security with Cyber Laws both in Global and Indian Legal environments

Learning Outcome

CO1: Describe the basic security fundamentals and cyber laws and legalities

CO2: Describe various cyber security vulnerabilities and threats such as virus, worms, online attacks, Dos and others.

CO3: Explain the regulations and acts to prevent cyber-attacks such as Risk assessment and security policy management.

CO4: Explain various vulnerability assessment and penetration testing tools.

CO5: Explain various protection methods to safeguard from cyber-attacks using technologies like cryptography and Intrusion prevention systems.

Unit-1
Teaching Hours:6
UNIT 1
 

Security Fundamentals-4 As Architecture Authentication Authorization Accountability, Social Media, Social Networking and Cyber Security.Cyber Laws, IT Act 2000-IT Act 2008-Laws for Cyber-Security, Comprehensive National Cyber-Security Initiative CNCI – Legalities

Unit-1
Teaching Hours:6
UNIT 1
 

Security Fundamentals-4 As Architecture Authentication Authorization Accountability, Social Media, Social Networking and Cyber Security.Cyber Laws, IT Act 2000-IT Act 2008-Laws for Cyber-Security, Comprehensive National Cyber-Security Initiative CNCI – Legalities

Unit-1
Teaching Hours:6
UNIT 1
 

Security Fundamentals-4 As Architecture Authentication Authorization Accountability, Social Media, Social Networking and Cyber Security.Cyber Laws, IT Act 2000-IT Act 2008-Laws for Cyber-Security, Comprehensive National Cyber-Security Initiative CNCI – Legalities

Unit-1
Teaching Hours:6
UNIT 1
 

Security Fundamentals-4 As Architecture Authentication Authorization Accountability, Social Media, Social Networking and Cyber Security.Cyber Laws, IT Act 2000-IT Act 2008-Laws for Cyber-Security, Comprehensive National Cyber-Security Initiative CNCI – Legalities

Unit-2
Teaching Hours:6
UNIT 2
 

Cyber Attack and Cyber Services Computer Virus – Computer Worms – Trojan horse.Vulnerabilities -  Phishing -  Online Attacks – Pharming - Phoarging  –  Cyber Attacks  -  Cyber Threats -  Zombie- stuxnet - Denial of Service Vulnerabilities  - Server Hardening-TCP/IP attack-SYN Flood

Unit-2
Teaching Hours:6
UNIT 2
 

Cyber Attack and Cyber Services Computer Virus – Computer Worms – Trojan horse.Vulnerabilities -  Phishing -  Online Attacks – Pharming - Phoarging  –  Cyber Attacks  -  Cyber Threats -  Zombie- stuxnet - Denial of Service Vulnerabilities  - Server Hardening-TCP/IP attack-SYN Flood

Unit-2
Teaching Hours:6
UNIT 2
 

Cyber Attack and Cyber Services Computer Virus – Computer Worms – Trojan horse.Vulnerabilities -  Phishing -  Online Attacks – Pharming - Phoarging  –  Cyber Attacks  -  Cyber Threats -  Zombie- stuxnet - Denial of Service Vulnerabilities  - Server Hardening-TCP/IP attack-SYN Flood

Unit-2
Teaching Hours:6
UNIT 2
 

Cyber Attack and Cyber Services Computer Virus – Computer Worms – Trojan horse.Vulnerabilities -  Phishing -  Online Attacks – Pharming - Phoarging  –  Cyber Attacks  -  Cyber Threats -  Zombie- stuxnet - Denial of Service Vulnerabilities  - Server Hardening-TCP/IP attack-SYN Flood

Unit-3
Teaching Hours:6
UNIT 3
 

Cyber Security Management Risk Management and Assessment - Risk Management Process - Threat Determination Process -Risk Assessment - Risk Management Lifecycle.Security Policy Management - Security Policies - Coverage Matrix Business Continuity Planning - DisasterTypes  -  Disaster Recovery Plan - Business Continuity Planning Process

Unit-3
Teaching Hours:6
UNIT 3
 

Cyber Security Management Risk Management and Assessment - Risk Management Process - Threat Determination Process -Risk Assessment - Risk Management Lifecycle.Security Policy Management - Security Policies - Coverage Matrix Business Continuity Planning - DisasterTypes  -  Disaster Recovery Plan - Business Continuity Planning Process

Unit-3
Teaching Hours:6
UNIT 3
 

Cyber Security Management Risk Management and Assessment - Risk Management Process - Threat Determination Process -Risk Assessment - Risk Management Lifecycle.Security Policy Management - Security Policies - Coverage Matrix Business Continuity Planning - DisasterTypes  -  Disaster Recovery Plan - Business Continuity Planning Process

Unit-3
Teaching Hours:6
UNIT 3
 

Cyber Security Management Risk Management and Assessment - Risk Management Process - Threat Determination Process -Risk Assessment - Risk Management Lifecycle.Security Policy Management - Security Policies - Coverage Matrix Business Continuity Planning - DisasterTypes  -  Disaster Recovery Plan - Business Continuity Planning Process

Unit-4
Teaching Hours:6
UNIT 4
 

Vulnerability - Assessment and Tools: Vulnerability Testing - Penetration Testing Black box- white box.Architectural Integration:  Security Zones - Devicesviz Routers, Firewalls, DMZ. Configuration Management - Certification and Accreditation for Cyber-Security.

Unit-4
Teaching Hours:6
UNIT 4
 

Vulnerability - Assessment and Tools: Vulnerability Testing - Penetration Testing Black box- white box.Architectural Integration:  Security Zones - Devicesviz Routers, Firewalls, DMZ. Configuration Management - Certification and Accreditation for Cyber-Security.

Unit-4
Teaching Hours:6
UNIT 4
 

Vulnerability - Assessment and Tools: Vulnerability Testing - Penetration Testing Black box- white box.Architectural Integration:  Security Zones - Devicesviz Routers, Firewalls, DMZ. Configuration Management - Certification and Accreditation for Cyber-Security.

Unit-4
Teaching Hours:6
UNIT 4
 

Vulnerability - Assessment and Tools: Vulnerability Testing - Penetration Testing Black box- white box.Architectural Integration:  Security Zones - Devicesviz Routers, Firewalls, DMZ. Configuration Management - Certification and Accreditation for Cyber-Security.

Unit-5
Teaching Hours:6
UNIT 5
 

Authentication and Cryptography: Authentication - Cryptosystems - Certificate Services, Securing Communications:  Securing Services -  Transport  –  Wireless  -  Steganography and NTFS Data Streams. Intrusion Detection and Prevention Systems:   Intrusion -  Defense in Depth  -  IDS/IPS  -IDS/IPS Weakness and Forensic AnalysisCyber Evolution: Cyber Organization – Cyber Future

Unit-5
Teaching Hours:6
UNIT 5
 

Authentication and Cryptography: Authentication - Cryptosystems - Certificate Services, Securing Communications:  Securing Services -  Transport  –  Wireless  -  Steganography and NTFS Data Streams. Intrusion Detection and Prevention Systems:   Intrusion -  Defense in Depth  -  IDS/IPS  -IDS/IPS Weakness and Forensic AnalysisCyber Evolution: Cyber Organization – Cyber Future

Unit-5
Teaching Hours:6
UNIT 5
 

Authentication and Cryptography: Authentication - Cryptosystems - Certificate Services, Securing Communications:  Securing Services -  Transport  –  Wireless  -  Steganography and NTFS Data Streams. Intrusion Detection and Prevention Systems:   Intrusion -  Defense in Depth  -  IDS/IPS  -IDS/IPS Weakness and Forensic AnalysisCyber Evolution: Cyber Organization – Cyber Future

Unit-5
Teaching Hours:6
UNIT 5
 

Authentication and Cryptography: Authentication - Cryptosystems - Certificate Services, Securing Communications:  Securing Services -  Transport  –  Wireless  -  Steganography and NTFS Data Streams. Intrusion Detection and Prevention Systems:   Intrusion -  Defense in Depth  -  IDS/IPS  -IDS/IPS Weakness and Forensic AnalysisCyber Evolution: Cyber Organization – Cyber Future

Text Books And Reference Books:

R1. Matt Bishop, “Introduction to Computer Security”, Pearson, 6th impression, ISBN: 978-81-7758-425-7.

R2. Thomas R, Justin Peltier, John, “Information Security Fundamentals”, Auerbach Publications.

R3. AtulKahate, “Cryptography and Network Security”,  2nd Edition, Tata McGrawHill.2003

R4. Nina Godbole, SunitBelapure, “Cyber Security”, Wiley India 1st Edition 2011

R5. Jennifer L. Bayuk and Jason Healey and Paul Rohmeyer and Marcus Sachs, “Cyber Security Policy Guidebook”, Wiley; 1 edition , 2012

R6. Dan Shoemaker and Wm. Arthur Conklin, “Cyber security: The Essential Body Of Knowledge”,   Delmar Cengage Learning; 1 edition, 2011

R7. Stallings, “Cryptography & Network Security - Principles & Practice”, Prentice Hall, 6th Edition 2014

Essential Reading / Recommended Reading

NIL

Evaluation Pattern

Only CIA will be conducted as per the University norms. No ESE

Maximum Marks : 50

EC334P - DIGITAL ELECTRONICS (2023 Batch)

Total Teaching Hours for Semester:75
No of Lecture Hours/Week:5
Max Marks:100
Credits:4

Course Objectives/Course Description

 

To study the basics of digital circuits and learn methods and fundamental concepts used in the design of digital systems.

Learning Outcome

CO1: To apply the principles of Boolean algebra and K-map to design combinational circuits

CO2: To analyze the operation of sequential circuits built with various flip-flops and design of counters, registers

CO3: To use state machine diagrams to design finite state machines using various types of flip-flops and combinational circuits with prescribed functionality.

CO4: To understand the concepts of data paths, control units, and micro-operations and building blocks of digital systems

CO5: To design combinational and sequential circuits using verilog HDL modeling.

Unit-1
Teaching Hours:9
COMBINATIONAL CIRCUITS
 

Design procedure – Four variable Karnaugh Maps, Adders-Subtractors – Serial adder/Subtractor - Parallel adder/ Subtractor- Carry look ahead adder- BCD adder, Magnitude Comparator. Multiplexer/ Demultiplexer,Encoder / decoder, parity checker, Code converters. Implementation of combinational logic using MUX, ROM, PAL and PLA

Unit-1
Teaching Hours:9
COMBINATIONAL CIRCUITS
 

Design procedure – Four variable Karnaugh Maps, Adders-Subtractors – Serial adder/Subtractor - Parallel adder/ Subtractor- Carry look ahead adder- BCD adder, Magnitude Comparator. Multiplexer/ Demultiplexer,Encoder / decoder, parity checker, Code converters. Implementation of combinational logic using MUX, ROM, PAL and PLA

Unit-2
Teaching Hours:9
SEQUENTIAL CIRCUITS
 

Classification of sequential circuits, Moore and Mealy -Design of Synchronous counters: state diagram- State table –State minimization –State assignment- ASM-Excitation table and maps-Circuit implementation - Universal shift register – Shift counters – Ring counters

Unit-2
Teaching Hours:9
SEQUENTIAL CIRCUITS
 

Classification of sequential circuits, Moore and Mealy -Design of Synchronous counters: state diagram- State table –State minimization –State assignment- ASM-Excitation table and maps-Circuit implementation - Universal shift register – Shift counters – Ring counters

Unit-3
Teaching Hours:9
ASYNCHRONOUS SEQUENTIAL CIRCUITS
 

Design of fundamental mode and pulse mode circuits – primitive state / flow table – Minimization of primitive state table –state assignment – Excitation table – Excitation map- cycles – Races, Hazards: Static –Dynamic –Essential –Hazards elimination.

Unit-3
Teaching Hours:9
ASYNCHRONOUS SEQUENTIAL CIRCUITS
 

Design of fundamental mode and pulse mode circuits – primitive state / flow table – Minimization of primitive state table –state assignment – Excitation table – Excitation map- cycles – Races, Hazards: Static –Dynamic –Essential –Hazards elimination.

Unit-4
Teaching Hours:9
DIGITAL INTEGRATED CIRCUITS
 

Introduction – Special Characteristics – Bipolar Transistor Characteristics – RTL and DTL circuits – Transistor-Transistor Logic (TTL) Emitter Coupled Logic (ECL) – Metal Oxide Semiconductor (MOS) – Complementary MOS (CMOS) – CMOS Transmission Gate circuits

Unit-4
Teaching Hours:9
DIGITAL INTEGRATED CIRCUITS
 

Introduction – Special Characteristics – Bipolar Transistor Characteristics – RTL and DTL circuits – Transistor-Transistor Logic (TTL) Emitter Coupled Logic (ECL) – Metal Oxide Semiconductor (MOS) – Complementary MOS (CMOS) – CMOS Transmission Gate circuits

Unit-5
Teaching Hours:9
VERILOG HDL
 

Basic Concepts: VLSI Design flow, identifiers, gate primitives, value set, ports, gate delays, structural gate level modeling, Behavioral modeling, Data flow modeling, Design hierarchies, Structural gate level description of combinational and sequential circuits.

Unit-5
Teaching Hours:9
VERILOG HDL
 

Basic Concepts: VLSI Design flow, identifiers, gate primitives, value set, ports, gate delays, structural gate level modeling, Behavioral modeling, Data flow modeling, Design hierarchies, Structural gate level description of combinational and sequential circuits.

Text Books And Reference Books:

T1. M. Morris Mano, Michael D. Ciletti, “Digital Design” 5thEdition, Prentice Hall of India Pvt. Ltd., New Delhi, 2015/Pearson Education (Singapore) Pvt. Ltd., New Delhi, 2003.

T2. Samir Palnitkar, “Verilog HDL”, 2 edition, Pearson Education, 2003

T3. Peter.J.Ashenden, “Digital Design: An Embedded Systems Approach Using Verilog”, Elsevier 2010

Essential Reading / Recommended Reading

R1. John .M Yarbrough,” Digital Logic Applications and Design, Thomson- Vikas Publishing house, New Delhi, 2006. 

R2. S. Salivahanan and S. Arivazhagan, “Digital Circuits and Design, 5th ed., Vikas Publishing House Pvt. Ltd, New Delhi, 2016.

R3. Charles H.Roth, ” Fundamentals of Logic Design”, Thomson Publication Company, 2012.

R4. Donald P.Leach and Albert Paul Malvino, “Digital Principles and Applications”,6th Edition, Tata McGraw Hill Publishing Company Limited, New Delhi, 2012.

Evaluation Pattern

CIA-65 MARKS

ESE-35 MARKS

ECHO341CSP - INTRODUCTION TO CRYPTOLOGY (2023 Batch)

Total Teaching Hours for Semester:75
No of Lecture Hours/Week:4
Max Marks:100
Credits:4

Course Objectives/Course Description

 

 The aim of this course is to familiarize the students with the understanding of the essential requirements of a security architecture and the commonly occurring security attacks. Also the course differentiates between block ciphers and stream ciphers using examples. The concepts of Public  key cryptography is also imparted. 

Learning Outcome

CO1: Apply the knowledge of mathematics, science, engineering and learn about basic concepts of number theory and finite fields

CO2: To understand and learn about classical encryption standards

CO3: To understand and analyse the various pseudo random sequence generators

CO4: Describe about Public key cryptography and the mechanisms available to implement it.

CO5: To learn and understand the concepts of one way hash functions

Unit-1
Teaching Hours:9
Basic Concepts of Number Theory and Finite Fields:
 

Divisibility and the divisibility algorithm, Euclidean algorithm, Modular arithmetic, Groups, Rings and Fields, Finite fields of the form GF(p), Polynomial arithmetic, Finite fields of the form GF(2n), Galois group of a field extensions, Fixed field and Galois extensions, Fundamental theorem of Galois Theory

Unit-1
Teaching Hours:9
Basic Concepts of Number Theory and Finite Fields:
 

Divisibility and the divisibility algorithm, Euclidean algorithm, Modular arithmetic, Groups, Rings and Fields, Finite fields of the form GF(p), Polynomial arithmetic, Finite fields of the form GF(2n), Galois group of a field extensions, Fixed field and Galois extensions, Fundamental theorem of Galois Theory

Unit-1
Teaching Hours:9
Basic Concepts of Number Theory and Finite Fields:
 

Divisibility and the divisibility algorithm, Euclidean algorithm, Modular arithmetic, Groups, Rings and Fields, Finite fields of the form GF(p), Polynomial arithmetic, Finite fields of the form GF(2n), Galois group of a field extensions, Fixed field and Galois extensions, Fundamental theorem of Galois Theory

Unit-2
Teaching Hours:9
Classical Encryption Techniques
 

Symmetric cipher model, Substitution techniques, Transposition techniques, Steganography, Traditional Block Cipher structure, Data Encryption Standard (DES) 

Unit-2
Teaching Hours:9
Classical Encryption Techniques
 

Symmetric cipher model, Substitution techniques, Transposition techniques, Steganography, Traditional Block Cipher structure, Data Encryption Standard (DES) 

Unit-2
Teaching Hours:9
Classical Encryption Techniques
 

Symmetric cipher model, Substitution techniques, Transposition techniques, Steganography, Traditional Block Cipher structure, Data Encryption Standard (DES) 

Unit-3
Teaching Hours:9
Pseudo-Random-Sequence Generators
 

The AES Cipher, Linear Congruential Generators, Linear Feedback Shift Registers, Design and analysis of stream ciphers, Stream ciphers using LFSRs 

Unit-3
Teaching Hours:9
Pseudo-Random-Sequence Generators
 

The AES Cipher, Linear Congruential Generators, Linear Feedback Shift Registers, Design and analysis of stream ciphers, Stream ciphers using LFSRs 

Unit-3
Teaching Hours:9
Pseudo-Random-Sequence Generators
 

The AES Cipher, Linear Congruential Generators, Linear Feedback Shift Registers, Design and analysis of stream ciphers, Stream ciphers using LFSRs 

Unit-4
Teaching Hours:9
Principles of Public-Key Cryptosystems
 

Prime Numbers, Fermat‘s and Euler‘s theorem, Primality testing, Chinese Remainder theorem, discrete logarithm, The RSA algorithm, Diffie - Hellman Key Exchange, Elliptic Curve Arithmetic, Elliptic Curve Cryptography

Unit-4
Teaching Hours:9
Principles of Public-Key Cryptosystems
 

Prime Numbers, Fermat‘s and Euler‘s theorem, Primality testing, Chinese Remainder theorem, discrete logarithm, The RSA algorithm, Diffie - Hellman Key Exchange, Elliptic Curve Arithmetic, Elliptic Curve Cryptography

Unit-4
Teaching Hours:9
Principles of Public-Key Cryptosystems
 

Prime Numbers, Fermat‘s and Euler‘s theorem, Primality testing, Chinese Remainder theorem, discrete logarithm, The RSA algorithm, Diffie - Hellman Key Exchange, Elliptic Curve Arithmetic, Elliptic Curve Cryptography

Unit-5
Teaching Hours:9
One-Way Hash Functions
 

Background, Snefru, N-Hash, MD4, MD5, Secure Hash Algorithm [SHA],One way hash functions using symmetric block algorithms, Using public key algorithms, Choosing a one-way hash functions, Message Authentication Codes. Digital Signature Algorithm, Discrete Logarithm Signature Scheme

Unit-5
Teaching Hours:9
One-Way Hash Functions
 

Background, Snefru, N-Hash, MD4, MD5, Secure Hash Algorithm [SHA],One way hash functions using symmetric block algorithms, Using public key algorithms, Choosing a one-way hash functions, Message Authentication Codes. Digital Signature Algorithm, Discrete Logarithm Signature Scheme

Unit-5
Teaching Hours:9
One-Way Hash Functions
 

Background, Snefru, N-Hash, MD4, MD5, Secure Hash Algorithm [SHA],One way hash functions using symmetric block algorithms, Using public key algorithms, Choosing a one-way hash functions, Message Authentication Codes. Digital Signature Algorithm, Discrete Logarithm Signature Scheme

Text Books And Reference Books:
  1. Behrouz A. Forouzan and D. Mukhopadhyay, Cryptography & Network Security, McGraw Hill, New Delhi.

William Stallings, Cryptography and Network Security: Principles and Practice, Prentice-Hall

Essential Reading / Recommended Reading

Cryptography and Network Security, Atul Kahate, TMH, 2003.

Evaluation Pattern

CIA I-20 MARKS

CIA II-50 MARKS

CIA III-20 MARKS

ATTENDANCE-5 MARKS

PRACTICAL -50 MARKS

END SEMESTER EXAMINATION -100 MARKS

 

SCALED[ CIA(THEORY+PRACTICAL) -70 MARKS & ESE -30 MARKS]

ELC331 - MATHEMATICS FOR INTELLIGENT SYSTEMS (2023 Batch)

Total Teaching Hours for Semester:45
No of Lecture Hours/Week:3
Max Marks:100
Credits:3

Course Objectives/Course Description

 

The course will lay down the basic concepts and techniques of linear algebra, differential equation, Analytical optimization and graph theory as applied to intelligent system design.

Learning Outcome

CO1: Apply the understanding of working with data in matrix form for solving systems of linear algebraic equations, for finding the basic matrix decompositions with the general understanding of their applicability in intelligent systems.

CO2: Understand the notion of an abstract vector space and how coordinates, and matrices of linear transformations, arise from the underlying linearity structures imposed on the system

CO3: Apply multivariable and vector-valued functions and their derivatives, using gradient algorithms to determine local/global maxima and minima, saddle points.

CO4: Analyze the type of optimization problem and apply suitable algorithm to find the optimum value of the objective function

CO5: Understand the fundamental concepts in graph theory and Apply algorithms and theorems from graph theory on solving problems

Unit-1
Teaching Hours:9
Linear Algebra
 

Introduction, Gaussian Elimination ( for solutions and Inverse, Nonsingular versus Singular) ,Determinants and Properties of the Determinant.

 

Vector Spaces (column, Row Null and left nullspace), Linear Independence, Basis and Dimension, Linear Transformations, Eigenvalues and Eigenvectors, Diagonalization of a Matrix, Positive Semi definite and Positive Definite, Using Python For Linear Algebra

Unit-2
Teaching Hours:9
Multivariant Calculus
 

Partial derivatives,Taylors Series and Linearization, Gradient, directional derivative. Vector and matrix calculus, Calculus: Convexity and concavity of functions of one and two variables, local/global maxima and minima, saddle point, Jacobian, Hessian Using Python for Multivariant Calculus

Unit-3
Teaching Hours:9
Statistics and Probability
 

Principles of Probablity Theory( Expectation, Variance, density , Bayes theorem, Central limit Theory), Standard Distributions (Binomial, Poisson, Normal, Chi-squared,t-distribution) , Maximum Likelyhood Theory, Statistical Tests(type I, Type II error, T-test, Chi-squared Test), Confidence Intervals, Using Python For Statistics and Probablity

Unit-4
Teaching Hours:9
Optimization
 

Objective function, Constraints; Formulation of simple design problems as mathematical programming problems. Classification of optimization problems, Optimization with linear constraint using  Lagrangian function, Standard form of linear programming (LP) problem- Graphical method, Steepest descent method, Newtons Method, Convex optimization.Using Python for Optimisation

Unit-5
Teaching Hours:9
Graph Theory
 

Graph Theory: Graph Terminology and Special Types of Graphs, Planar Graphs, Graph Coloring, Trees, Vertex cover, matching, path cover, connectivity, edge coloring, vertex coloring, list coloring; Planarity, Perfect graphs; other special classes of Graphs Connectivity, Hamilton Paths-Travelling salesman problem . Shortest path algorithm-Dijkstra’s algorithm, Using Python for Graph Theory

Text Books And Reference Books:

T1.  Gilbert Strang, Linear Algebra and its applications, 4th Ed, Cengage Learning, 2006

T2.  MP Deisenroth, A A Faisal, C S Ong, Mathematics for Machine learning, Cambridge University, 2020

T3.  Phil Dyke, Advanced Calculus, Macmillan International Higher Education, 1998 

T4.  Fletcher R., Practical Methods of Optimization, John Wiley, 2000

 

T5.  Reinhard Diestel, "Graph Theory", Springer (2010)

Essential Reading / Recommended Reading

R1.  Singiresu S Rao, Engineering Optimization, 4th ed, Wiley, 2009

 

R2.  Jorge Nocedal and Stephen J. Wright: "Numerical Optimization", second ed,1999

Evaluation Pattern

CIA-50 marks

ESE-50 marks

 

ELC332P - DATA STRUCTURES AND ALGORITHMS (2023 Batch)

Total Teaching Hours for Semester:75
No of Lecture Hours/Week:5
Max Marks:100
Credits:4

Course Objectives/Course Description

 

This course is designed to make the students familiar with basic techniques of algorithm analysis, to understand concepts of searching and sorting techniques and to assess how the choice of data structures impacts the performance of a program.

Learning Outcome

CO1: Explain linear and non-linear data structures like stack, queue, linked list, tree and graph

CO2: Explain data structures operations including insertion, deletion, traversal, searching, and sorting

CO3: Understand the concept and operations of singly linked list, circular linked list and double linked list

CO4: Understand the functions of data warehousing including the components, architecture mapping, data extraction and data cleanup

CO5: Demonstrate online analytical processing (OLAP) as per the OLAP guidelines using OLAP tools.

CO6: Implement programs to summarize the operations of data structures

Unit-1
Teaching Hours:9
INTRODUCTION
 

Definition and basics of: Data Structure, ADT, Algorithms, Time and Space Complexity, Asymptotic Notations (O, θ, Ω), Time complexity computation of non-recursive algorithms (like Matrix addition, Selection sort – using step count), Array – basic operations, concept of multi-dimensional array, Polynomial operations using Array, Sparse Matrix

Unit-2
Teaching Hours:9
STACK AND QUEUE
 

Stack ADT: basic operations, Queue ADT: basic operations, Circular Queue, Evaluation of Expressions, Another application or Mazing Problem

Unit-3
Teaching Hours:9
LINKED LIST
 

Singly Linked List: concept, representation and operations, Circular Linked List, Polynomial and Sparse Matrix operations using LL, Doubly Linked List: basic concept

Unit-4
Teaching Hours:9
INTRODUCTION TO ALGORITHMS
 

Introduction, Notion of Algorithm, Fundamentals of Algorithmic Solving, Fundamentals of the Analysis Framework, Asymptotic Notations and Basic Efficiency Classes, Mathematical Analysis of Non-recursive Algorithm, Mathematical Analysis of Recursive Algorithm and examples, Empirical Analysis of Algorithms and Algorithm Visualization

Unit-5
Teaching Hours:9
ALGORITHM DESIGN TECHNIQUES
 

Brute Force and Exhaustive Search: Selection Sort, Bubble Sort, Sequential Search and Brute-force string matching, Travelling Salesman Problem, Knapsack Problem, Assignment Problem, DFS and BFS. Decrease and Conquer: Insertion Sort and Topological Sorting and Binary Search, Warshall’s and Floyd’s Algorithm. Greedy Techniques: Prim’s Algorithm, Kruskal’s Algorithm, Dijkstra’s Algorithm and Huffman trees

Text Books And Reference Books:

T1. Sahni Horwitz,, Freed Anderson, Fundamentals of Data Structures in C, 2nd Edition (or latest) , University Press.\

T2. Anany Levitin, “Introduction to the Design and Analysis of Algorithm”, 3/e, Pearson Education Asia, 2008, (Reprint 2012).

 

T3. Michael T. Goodrich, Roberto Tamassia, Michael H. Goldwasser, “Data Structures and Algorithms in Java”, 6/e, Wiley, 2014.

Essential Reading / Recommended Reading

R1. TharejaReema, Data Structures Using C, 2nd Edition, Oxford University Press

R2Tanenbaum, Langsam, Augenstein, Data Structures using C, Pearson

R3. T. H Cormen, C E Leiserson, R L Rivest and C Stein: “Introduction to Algorithms”, 3rd Edition, The MIT Press, 2014.

 

R4.Ellis Horowitz, Sartaj Sahni and Sanguthevar Rajasekaran, Computer Algorithms, Second Edition, Universities Press, 2007.

Evaluation Pattern

CIA-50 marks

ESE-50 marks

ELC333 - ELECTRONIC DEVICES AND CIRCUIT ANALYSIS (2023 Batch)

Total Teaching Hours for Semester:45
No of Lecture Hours/Week:3
Max Marks:100
Credits:3

Course Objectives/Course Description

 

To understand the multistage amplifiers and understand the concepts of High Frequency Analysis of Transistors. To realize the Concepts of negative feedback to improve the stability of amplifiers and positive feedback to generate sustained oscillations. To Categorize the type of oscillators and its characteristics and design Multivibrators and sweep circuits for various applications.

Learning Outcome

CO1: Understand the multistage amplifiers and understand the concepts of High Frequency Analysis of Transistors.

CO2: Recognize the Concepts of negative feedback to improve the stability of amplifiers and positive feedback to generate sustained oscillations

CO3: Classify the type of oscillators and its characteristics.

CO4: Realize different classes of Power Amplifiers and tuned amplifiers useable for audio and Radio applications.

CO5: Design Multivibrators and sweep circuits for various applications.

Unit-1
Teaching Hours:9
Multistage Amplifiers
 

Multistage Amplifiers: Classification of Amplifiers, Distortion in amplifiers, Different coupling schemes used in amplifiers, Frequency response and Analysis of multistage amplifiers, Casca RC Coupled amplifiers, Cascode amplifier, Darlington pair. Transistor at High Frequency: Hybrid – λ model of Common Emitter transistor model, fα, fβ and unity gain bandwidth, Gain-bandwidth product.

Unit-2
Teaching Hours:9
Feedback Amplifiers
 

Feedback Amplifiers: Concepts of feedback – Classification of feedback amplifiers – General characteristics of Negative feedback amplifiers – Effect of Feedback on Amplifier characteristics – Voltage series, Voltage shunt, Current series and Current shunt Feedback configurations – Simple problems

Unit-3
Teaching Hours:9
Oscillators
 

Oscillators: Condition for Oscillations, RC type Oscillators-RC phase shift and Wien-bridge Oscillators, LC type Oscillators –Generalized analysis of LC Oscillators, Hartley and Colpitts Oscillators, Frequency and amplitude stability of Oscillators, Crystal Oscillator.

Unit-4
Teaching Hours:9
Large Signal Amplifiers
 

Large Signal Amplifiers: Class A Power Amplifier- Series fed and Transformer coupled, Conversion Efficiency, Class B Power Amplifier- Push Pull and Complimentary Symmetry configurations, Conversion Efficiency, Principle of operation of Class AB and Class –C Amplifiers.

 

Tuned Amplifiers: Introduction, single Tuned Amplifiers – Q-factor, frequency response of tuned amplifiers, Concept of stagger tuning and synchronous tuning

Unit-5
Teaching Hours:9
Multivibrators
 

Multivibrators: Analysis and Design of Bistable, Monostable, Astable Multivibrators and Schmitt trigger using Transistors. Time Base Generators: General features of a Time base Signal, Methods of Generating Time Base Waveform, concepts of Transistor Miller and Bootstrap Time Base Generator, Methods of Linearity improvement

Text Books And Reference Books:

1. Integrated Electronics, Jacob Millman, Christos C Halkias, McGraw Hill Education.

2. Electronic Devices Conventional and current version -Thomas L. Floyd 2015, Pearson.

Essential Reading / Recommended Reading

1. Electronic Devices and Circuits, David A. Bell – 5th Edition, Oxford.

2. Electronic Devices and Circuits theory– Robert L. Boylestead, Louis Nashelsky, 11th Edition, 2009, Pearson

Evaluation Pattern

CIA-50 marks

ESE-50 marks

ELC335 - OPERATING SYSTEMS (2023 Batch)

Total Teaching Hours for Semester:45
No of Lecture Hours/Week:3
Max Marks:100
Credits:3

Course Objectives/Course Description

 

The objective of this course is to understand the basics and functions of operating systems, to understand processes and threads, to analyze scheduling algorithms and process synchronization, to familiar with I/O management, file systems and familiar with the basics of virtual machines and Mobile OS like iOS and Android.

Learning Outcome

CO1: Analyze various scheduling algorithms and process synchronization

CO2: Describe the symmetric ciphers based on AES standard

CO3: Understand the key management and public key cryptosystem

CO4: Illustrate the Hash Functions, Authentication Protocol and Digital Signature

CO5: Understand system security measures against Malicious Software

Unit-1
Teaching Hours:9
INTRODUCTION
 

Computer System - Elements and organization; Operating System Overview - Objectives and Functions - Evolution of Operating System; Operating System Structures – Operating System Services - User Operating System Interface - System Calls – System Programs - Design and Implementation - Structuring methods.

Unit-2
Teaching Hours:9
PROCESS MANAGEMENT
 

Processes - Process Concept - Process Scheduling - Operations on Processes - Inter-process Communication; CPU Scheduling - Scheduling criteria - Scheduling algorithms: Threads - Multithread Models – Threading issues; Process Synchronization - The Critical-Section problem - Synchronization hardware – Semaphores – Mutex - Classical problems of synchronization - Monitors; Deadlock - Methods for handling deadlocks, Deadlock prevention, Deadlock avoidance, Deadlock detection, Recovery from deadlock.

Unit-3
Teaching Hours:9
MEMORY MANAGEMENT
 

Main Memory - Swapping - Contiguous Memory Allocation – Paging - Structure of the Page Table - Segmentation, Segmentation with paging; Virtual Memory - Demand Paging – Copy on Write - Page Replacement - Allocation of Frames –Thrashing.

Unit-4
Teaching Hours:9
STORAGE MANAGEMENT
 

Mass Storage system – Disk Structure - Disk Scheduling and Management; File-System Interface - File concept - Access methods - Directory Structure - Directory organization - File system mounting - File Sharing and Protection; File System Implementation - File System Structure - Directory implementation - Allocation Methods - Free Space Management; I/O Systems – I/O Hardware, Application I/O interface, Kernel I/O subsystem.

Unit-5
Teaching Hours:9
VIRTUAL MACHINES AND MOBILE OS
 

Virtual Machines – History, Benefits and Features, Building Blocks, Types of Virtual Machines and their Implementations, Virtualization and Operating-System Components; Mobile OS - iOS and Android

Text Books And Reference Books:

T1. Abraham Silberschatz, Peter Baer Galvin and Greg Gagne, “Operating System Concepts”, 10th Edition, John Wiley and Sons Inc., 2018.

T2. Andrew S Tanenbaum, "Modern Operating Systems", Pearson, 5th Edition, 2022 New Delhi.

Essential Reading / Recommended Reading

R1. Ramaz Elmasri, A. Gil Carrick, David Levine, “ Operating Systems – A Spiral Approach”, Tata McGraw Hill Edition, 2010.

R2. William Stallings, "Operating Systems: Internals and Design Principles", 7th Edition, Prentice Hall, 2018.

R3. Achyut S.Godbole, Atul Kahate, “Operating Systems”, McGraw Hill Education, 2016.

Evaluation Pattern

CIA - 50marks

ESE - 50marks

OEC371 - NCC3 (2023 Batch)

Total Teaching Hours for Semester:15
No of Lecture Hours/Week:1
Max Marks:50
Credits:1

Course Objectives/Course Description

 

This course is designed to provide a holistic development program combining personality enhancement, physical training, leadership skills, and technical expertise. Students will engage in physical training, learn fundamental drill techniques, and gain hands-on experience in aviation, including airmanship, aircraft forces, and specific technical details of the ZENAIR CH 701. The course also includes practical exercises such as obstacle courses and social service activities to foster leadership and community involvement. Through a blend of theoretical knowledge and practical skills, students will be well-prepared for roles requiring both personal development and technical proficiency.

Develop self-awareness, confidence, and leadership qualities through structured personality development and leadership training.

Understand the principles of airmanship and the forces acting on aircraft to enhance operational knowledge in aviation.

Engage in social service activities to build leadership skills and contribute positively to the community.

Learning Outcome

CO1: Develop and apply self-awareness, effective communication, and time management skills to enhance personal confidence and leadership capabilities.

CO2: Apply principles of airmanship and technical knowledge to ensure safe and effective flight operations, including understanding aerodynamic forces and performing maintenance on the ZENAIR CH 701 aircraft.

CO3: Demonstrate effective application of leadership and teamwork skills through the successful planning and execution of community engagement activities

Unit-1
Teaching Hours:5
Personality Development and leadership
 
  • Personality Development

    • Self-awareness and Confidence: Techniques to build self-esteem and self-awareness.
    • Effective Communication: Skills for clear and impactful communication.
    • Time Management and Goal Setting: Strategies to manage time efficiently and set achievable goals.
    • Fundamentals of Foot Drill

      • Basic Movements and Commands: Training in fundamental drill movements and commands.
      • Marching Techniques: Proper techniques for marching and maintaining formation.
      • Discipline and Synchronization: Importance of precision and coordination in drill routines.
Unit-1
Teaching Hours:5
Personality Development and leadership
 
  • Personality Development

    • Self-awareness and Confidence: Techniques to build self-esteem and self-awareness.
    • Effective Communication: Skills for clear and impactful communication.
    • Time Management and Goal Setting: Strategies to manage time efficiently and set achievable goals.
    • Fundamentals of Foot Drill

      • Basic Movements and Commands: Training in fundamental drill movements and commands.
      • Marching Techniques: Proper techniques for marching and maintaining formation.
      • Discipline and Synchronization: Importance of precision and coordination in drill routines.
Unit-1
Teaching Hours:5
Personality Development and leadership
 
  • Personality Development

    • Self-awareness and Confidence: Techniques to build self-esteem and self-awareness.
    • Effective Communication: Skills for clear and impactful communication.
    • Time Management and Goal Setting: Strategies to manage time efficiently and set achievable goals.
    • Fundamentals of Foot Drill

      • Basic Movements and Commands: Training in fundamental drill movements and commands.
      • Marching Techniques: Proper techniques for marching and maintaining formation.
      • Discipline and Synchronization: Importance of precision and coordination in drill routines.
Unit-1
Teaching Hours:5
Personality Development and leadership
 
  • Personality Development

    • Self-awareness and Confidence: Techniques to build self-esteem and self-awareness.
    • Effective Communication: Skills for clear and impactful communication.
    • Time Management and Goal Setting: Strategies to manage time efficiently and set achievable goals.
    • Fundamentals of Foot Drill

      • Basic Movements and Commands: Training in fundamental drill movements and commands.
      • Marching Techniques: Proper techniques for marching and maintaining formation.
      • Discipline and Synchronization: Importance of precision and coordination in drill routines.
Unit-1
Teaching Hours:5
Personality Development and leadership
 
  • Personality Development

    • Self-awareness and Confidence: Techniques to build self-esteem and self-awareness.
    • Effective Communication: Skills for clear and impactful communication.
    • Time Management and Goal Setting: Strategies to manage time efficiently and set achievable goals.
    • Fundamentals of Foot Drill

      • Basic Movements and Commands: Training in fundamental drill movements and commands.
      • Marching Techniques: Proper techniques for marching and maintaining formation.
      • Discipline and Synchronization: Importance of precision and coordination in drill routines.
Unit-1
Teaching Hours:5
Personality Development and leadership
 
  • Personality Development

    • Self-awareness and Confidence: Techniques to build self-esteem and self-awareness.
    • Effective Communication: Skills for clear and impactful communication.
    • Time Management and Goal Setting: Strategies to manage time efficiently and set achievable goals.
    • Fundamentals of Foot Drill

      • Basic Movements and Commands: Training in fundamental drill movements and commands.
      • Marching Techniques: Proper techniques for marching and maintaining formation.
      • Discipline and Synchronization: Importance of precision and coordination in drill routines.
Unit-1
Teaching Hours:5
Personality Development and leadership
 
  • Personality Development

    • Self-awareness and Confidence: Techniques to build self-esteem and self-awareness.
    • Effective Communication: Skills for clear and impactful communication.
    • Time Management and Goal Setting: Strategies to manage time efficiently and set achievable goals.
    • Fundamentals of Foot Drill

      • Basic Movements and Commands: Training in fundamental drill movements and commands.
      • Marching Techniques: Proper techniques for marching and maintaining formation.
      • Discipline and Synchronization: Importance of precision and coordination in drill routines.
Unit-1
Teaching Hours:5
Personality Development and leadership
 
  • Personality Development

    • Self-awareness and Confidence: Techniques to build self-esteem and self-awareness.
    • Effective Communication: Skills for clear and impactful communication.
    • Time Management and Goal Setting: Strategies to manage time efficiently and set achievable goals.
    • Fundamentals of Foot Drill

      • Basic Movements and Commands: Training in fundamental drill movements and commands.
      • Marching Techniques: Proper techniques for marching and maintaining formation.
      • Discipline and Synchronization: Importance of precision and coordination in drill routines.
Unit-1
Teaching Hours:5
Personality Development and leadership
 
  • Personality Development

    • Self-awareness and Confidence: Techniques to build self-esteem and self-awareness.
    • Effective Communication: Skills for clear and impactful communication.
    • Time Management and Goal Setting: Strategies to manage time efficiently and set achievable goals.
    • Fundamentals of Foot Drill

      • Basic Movements and Commands: Training in fundamental drill movements and commands.
      • Marching Techniques: Proper techniques for marching and maintaining formation.
      • Discipline and Synchronization: Importance of precision and coordination in drill routines.
Unit-1
Teaching Hours:5
Personality Development and leadership
 
  • Personality Development

    • Self-awareness and Confidence: Techniques to build self-esteem and self-awareness.
    • Effective Communication: Skills for clear and impactful communication.
    • Time Management and Goal Setting: Strategies to manage time efficiently and set achievable goals.
    • Fundamentals of Foot Drill

      • Basic Movements and Commands: Training in fundamental drill movements and commands.
      • Marching Techniques: Proper techniques for marching and maintaining formation.
      • Discipline and Synchronization: Importance of precision and coordination in drill routines.
Unit-1
Teaching Hours:5
Personality Development and leadership
 
  • Personality Development

    • Self-awareness and Confidence: Techniques to build self-esteem and self-awareness.
    • Effective Communication: Skills for clear and impactful communication.
    • Time Management and Goal Setting: Strategies to manage time efficiently and set achievable goals.
    • Fundamentals of Foot Drill

      • Basic Movements and Commands: Training in fundamental drill movements and commands.
      • Marching Techniques: Proper techniques for marching and maintaining formation.
      • Discipline and Synchronization: Importance of precision and coordination in drill routines.
Unit-1
Teaching Hours:5
Personality Development and leadership
 
  • Personality Development

    • Self-awareness and Confidence: Techniques to build self-esteem and self-awareness.
    • Effective Communication: Skills for clear and impactful communication.
    • Time Management and Goal Setting: Strategies to manage time efficiently and set achievable goals.
    • Fundamentals of Foot Drill

      • Basic Movements and Commands: Training in fundamental drill movements and commands.
      • Marching Techniques: Proper techniques for marching and maintaining formation.
      • Discipline and Synchronization: Importance of precision and coordination in drill routines.
Unit-1
Teaching Hours:5
Personality Development and leadership
 
  • Personality Development

    • Self-awareness and Confidence: Techniques to build self-esteem and self-awareness.
    • Effective Communication: Skills for clear and impactful communication.
    • Time Management and Goal Setting: Strategies to manage time efficiently and set achievable goals.
    • Fundamentals of Foot Drill

      • Basic Movements and Commands: Training in fundamental drill movements and commands.
      • Marching Techniques: Proper techniques for marching and maintaining formation.
      • Discipline and Synchronization: Importance of precision and coordination in drill routines.
Unit-2
Teaching Hours:5
Aviation Knowledge and Technical Skills
 
  • Airmanship

    • Principles of Airmanship: Understanding the essential principles for effective flight operations.
    • Safety Procedures: Best practices for ensuring safety in aviation settings.
    • Situational Awareness: Techniques to maintain awareness and make informed decisions during flight.
  • Forces Acting on Aircraft

    • Aerodynamic Forces: Analysis of lift, weight, thrust, and drag.
    • Flight Performance: Impact of aerodynamic forces on aircraft performance.
    • Environmental Factors: Influence of environmental conditions on flight dynamics.
  • Technical Details: ZENAIR CH 701

    • Aircraft Specifications: Overview of technical features and specifications of the ZENAIR CH 701.
    • Maintenance Procedures: Routine maintenance and inspection practices.
    • Performance Evaluation: Assessing the aircraft's performance characteristics and capabilities.

 

Unit-2
Teaching Hours:5
Aviation Knowledge and Technical Skills
 
  • Airmanship

    • Principles of Airmanship: Understanding the essential principles for effective flight operations.
    • Safety Procedures: Best practices for ensuring safety in aviation settings.
    • Situational Awareness: Techniques to maintain awareness and make informed decisions during flight.
  • Forces Acting on Aircraft

    • Aerodynamic Forces: Analysis of lift, weight, thrust, and drag.
    • Flight Performance: Impact of aerodynamic forces on aircraft performance.
    • Environmental Factors: Influence of environmental conditions on flight dynamics.
  • Technical Details: ZENAIR CH 701

    • Aircraft Specifications: Overview of technical features and specifications of the ZENAIR CH 701.
    • Maintenance Procedures: Routine maintenance and inspection practices.
    • Performance Evaluation: Assessing the aircraft's performance characteristics and capabilities.

 

Unit-2
Teaching Hours:5
Aviation Knowledge and Technical Skills
 
  • Airmanship

    • Principles of Airmanship: Understanding the essential principles for effective flight operations.
    • Safety Procedures: Best practices for ensuring safety in aviation settings.
    • Situational Awareness: Techniques to maintain awareness and make informed decisions during flight.
  • Forces Acting on Aircraft

    • Aerodynamic Forces: Analysis of lift, weight, thrust, and drag.
    • Flight Performance: Impact of aerodynamic forces on aircraft performance.
    • Environmental Factors: Influence of environmental conditions on flight dynamics.
  • Technical Details: ZENAIR CH 701

    • Aircraft Specifications: Overview of technical features and specifications of the ZENAIR CH 701.
    • Maintenance Procedures: Routine maintenance and inspection practices.
    • Performance Evaluation: Assessing the aircraft's performance characteristics and capabilities.

 

Unit-2
Teaching Hours:5
Aviation Knowledge and Technical Skills
 
  • Airmanship

    • Principles of Airmanship: Understanding the essential principles for effective flight operations.
    • Safety Procedures: Best practices for ensuring safety in aviation settings.
    • Situational Awareness: Techniques to maintain awareness and make informed decisions during flight.
  • Forces Acting on Aircraft

    • Aerodynamic Forces: Analysis of lift, weight, thrust, and drag.
    • Flight Performance: Impact of aerodynamic forces on aircraft performance.
    • Environmental Factors: Influence of environmental conditions on flight dynamics.
  • Technical Details: ZENAIR CH 701

    • Aircraft Specifications: Overview of technical features and specifications of the ZENAIR CH 701.
    • Maintenance Procedures: Routine maintenance and inspection practices.
    • Performance Evaluation: Assessing the aircraft's performance characteristics and capabilities.

 

Unit-2
Teaching Hours:5
Aviation Knowledge and Technical Skills
 
  • Airmanship

    • Principles of Airmanship: Understanding the essential principles for effective flight operations.
    • Safety Procedures: Best practices for ensuring safety in aviation settings.
    • Situational Awareness: Techniques to maintain awareness and make informed decisions during flight.
  • Forces Acting on Aircraft

    • Aerodynamic Forces: Analysis of lift, weight, thrust, and drag.
    • Flight Performance: Impact of aerodynamic forces on aircraft performance.
    • Environmental Factors: Influence of environmental conditions on flight dynamics.
  • Technical Details: ZENAIR CH 701

    • Aircraft Specifications: Overview of technical features and specifications of the ZENAIR CH 701.
    • Maintenance Procedures: Routine maintenance and inspection practices.
    • Performance Evaluation: Assessing the aircraft's performance characteristics and capabilities.

 

Unit-2
Teaching Hours:5
Aviation Knowledge and Technical Skills
 
  • Airmanship

    • Principles of Airmanship: Understanding the essential principles for effective flight operations.
    • Safety Procedures: Best practices for ensuring safety in aviation settings.
    • Situational Awareness: Techniques to maintain awareness and make informed decisions during flight.
  • Forces Acting on Aircraft

    • Aerodynamic Forces: Analysis of lift, weight, thrust, and drag.
    • Flight Performance: Impact of aerodynamic forces on aircraft performance.
    • Environmental Factors: Influence of environmental conditions on flight dynamics.
  • Technical Details: ZENAIR CH 701

    • Aircraft Specifications: Overview of technical features and specifications of the ZENAIR CH 701.
    • Maintenance Procedures: Routine maintenance and inspection practices.
    • Performance Evaluation: Assessing the aircraft's performance characteristics and capabilities.

 

Unit-2
Teaching Hours:5
Aviation Knowledge and Technical Skills
 
  • Airmanship

    • Principles of Airmanship: Understanding the essential principles for effective flight operations.
    • Safety Procedures: Best practices for ensuring safety in aviation settings.
    • Situational Awareness: Techniques to maintain awareness and make informed decisions during flight.
  • Forces Acting on Aircraft

    • Aerodynamic Forces: Analysis of lift, weight, thrust, and drag.
    • Flight Performance: Impact of aerodynamic forces on aircraft performance.
    • Environmental Factors: Influence of environmental conditions on flight dynamics.
  • Technical Details: ZENAIR CH 701

    • Aircraft Specifications: Overview of technical features and specifications of the ZENAIR CH 701.
    • Maintenance Procedures: Routine maintenance and inspection practices.
    • Performance Evaluation: Assessing the aircraft's performance characteristics and capabilities.

 

Unit-2
Teaching Hours:5
Aviation Knowledge and Technical Skills
 
  • Airmanship

    • Principles of Airmanship: Understanding the essential principles for effective flight operations.
    • Safety Procedures: Best practices for ensuring safety in aviation settings.
    • Situational Awareness: Techniques to maintain awareness and make informed decisions during flight.
  • Forces Acting on Aircraft

    • Aerodynamic Forces: Analysis of lift, weight, thrust, and drag.
    • Flight Performance: Impact of aerodynamic forces on aircraft performance.
    • Environmental Factors: Influence of environmental conditions on flight dynamics.
  • Technical Details: ZENAIR CH 701

    • Aircraft Specifications: Overview of technical features and specifications of the ZENAIR CH 701.
    • Maintenance Procedures: Routine maintenance and inspection practices.
    • Performance Evaluation: Assessing the aircraft's performance characteristics and capabilities.

 

Unit-2
Teaching Hours:5
Aviation Knowledge and Technical Skills
 
  • Airmanship

    • Principles of Airmanship: Understanding the essential principles for effective flight operations.
    • Safety Procedures: Best practices for ensuring safety in aviation settings.
    • Situational Awareness: Techniques to maintain awareness and make informed decisions during flight.
  • Forces Acting on Aircraft

    • Aerodynamic Forces: Analysis of lift, weight, thrust, and drag.
    • Flight Performance: Impact of aerodynamic forces on aircraft performance.
    • Environmental Factors: Influence of environmental conditions on flight dynamics.
  • Technical Details: ZENAIR CH 701

    • Aircraft Specifications: Overview of technical features and specifications of the ZENAIR CH 701.
    • Maintenance Procedures: Routine maintenance and inspection practices.
    • Performance Evaluation: Assessing the aircraft's performance characteristics and capabilities.

 

Unit-2
Teaching Hours:5
Aviation Knowledge and Technical Skills
 
  • Airmanship

    • Principles of Airmanship: Understanding the essential principles for effective flight operations.
    • Safety Procedures: Best practices for ensuring safety in aviation settings.
    • Situational Awareness: Techniques to maintain awareness and make informed decisions during flight.
  • Forces Acting on Aircraft

    • Aerodynamic Forces: Analysis of lift, weight, thrust, and drag.
    • Flight Performance: Impact of aerodynamic forces on aircraft performance.
    • Environmental Factors: Influence of environmental conditions on flight dynamics.
  • Technical Details: ZENAIR CH 701

    • Aircraft Specifications: Overview of technical features and specifications of the ZENAIR CH 701.
    • Maintenance Procedures: Routine maintenance and inspection practices.
    • Performance Evaluation: Assessing the aircraft's performance characteristics and capabilities.

 

Unit-2
Teaching Hours:5
Aviation Knowledge and Technical Skills
 
  • Airmanship

    • Principles of Airmanship: Understanding the essential principles for effective flight operations.
    • Safety Procedures: Best practices for ensuring safety in aviation settings.
    • Situational Awareness: Techniques to maintain awareness and make informed decisions during flight.
  • Forces Acting on Aircraft

    • Aerodynamic Forces: Analysis of lift, weight, thrust, and drag.
    • Flight Performance: Impact of aerodynamic forces on aircraft performance.
    • Environmental Factors: Influence of environmental conditions on flight dynamics.
  • Technical Details: ZENAIR CH 701

    • Aircraft Specifications: Overview of technical features and specifications of the ZENAIR CH 701.
    • Maintenance Procedures: Routine maintenance and inspection practices.
    • Performance Evaluation: Assessing the aircraft's performance characteristics and capabilities.

 

Unit-2
Teaching Hours:5
Aviation Knowledge and Technical Skills
 
  • Airmanship

    • Principles of Airmanship: Understanding the essential principles for effective flight operations.
    • Safety Procedures: Best practices for ensuring safety in aviation settings.
    • Situational Awareness: Techniques to maintain awareness and make informed decisions during flight.
  • Forces Acting on Aircraft

    • Aerodynamic Forces: Analysis of lift, weight, thrust, and drag.
    • Flight Performance: Impact of aerodynamic forces on aircraft performance.
    • Environmental Factors: Influence of environmental conditions on flight dynamics.
  • Technical Details: ZENAIR CH 701

    • Aircraft Specifications: Overview of technical features and specifications of the ZENAIR CH 701.
    • Maintenance Procedures: Routine maintenance and inspection practices.
    • Performance Evaluation: Assessing the aircraft's performance characteristics and capabilities.

 

Unit-2
Teaching Hours:5
Aviation Knowledge and Technical Skills
 
  • Airmanship

    • Principles of Airmanship: Understanding the essential principles for effective flight operations.
    • Safety Procedures: Best practices for ensuring safety in aviation settings.
    • Situational Awareness: Techniques to maintain awareness and make informed decisions during flight.
  • Forces Acting on Aircraft

    • Aerodynamic Forces: Analysis of lift, weight, thrust, and drag.
    • Flight Performance: Impact of aerodynamic forces on aircraft performance.
    • Environmental Factors: Influence of environmental conditions on flight dynamics.
  • Technical Details: ZENAIR CH 701

    • Aircraft Specifications: Overview of technical features and specifications of the ZENAIR CH 701.
    • Maintenance Procedures: Routine maintenance and inspection practices.
    • Performance Evaluation: Assessing the aircraft's performance characteristics and capabilities.

 

Unit-3
Teaching Hours:5
Practical Application and Community Engagement
 
  • Engine Performance

    • Diagnostic Techniques: Methods for diagnosing engine performance issues.
    • Maintenance Practices: Routine checks and maintenance to ensure optimal engine function.
    • Performance Analysis: Evaluating engine performance data and addressing operational issues.
  • Obstacle Course

    • Course Navigation: Techniques for efficiently navigating and overcoming obstacles.
    • Agility and Coordination: Exercises to enhance physical agility and coordination.
    • Performance Evaluation: Assessing personal performance and identifying areas for improvement.
  • Social Service Activity

    • Community Engagement: Planning and organizing activities that benefit the community.
    • Leadership and Teamwork: Applying leadership skills in social service projects.
    • Impact Assessment: Reflecting on the impact of social service activities on personal growth and community well-being.
Unit-3
Teaching Hours:5
Practical Application and Community Engagement
 
  • Engine Performance

    • Diagnostic Techniques: Methods for diagnosing engine performance issues.
    • Maintenance Practices: Routine checks and maintenance to ensure optimal engine function.
    • Performance Analysis: Evaluating engine performance data and addressing operational issues.
  • Obstacle Course

    • Course Navigation: Techniques for efficiently navigating and overcoming obstacles.
    • Agility and Coordination: Exercises to enhance physical agility and coordination.
    • Performance Evaluation: Assessing personal performance and identifying areas for improvement.
  • Social Service Activity

    • Community Engagement: Planning and organizing activities that benefit the community.
    • Leadership and Teamwork: Applying leadership skills in social service projects.
    • Impact Assessment: Reflecting on the impact of social service activities on personal growth and community well-being.
Unit-3
Teaching Hours:5
Practical Application and Community Engagement
 
  • Engine Performance

    • Diagnostic Techniques: Methods for diagnosing engine performance issues.
    • Maintenance Practices: Routine checks and maintenance to ensure optimal engine function.
    • Performance Analysis: Evaluating engine performance data and addressing operational issues.
  • Obstacle Course

    • Course Navigation: Techniques for efficiently navigating and overcoming obstacles.
    • Agility and Coordination: Exercises to enhance physical agility and coordination.
    • Performance Evaluation: Assessing personal performance and identifying areas for improvement.
  • Social Service Activity

    • Community Engagement: Planning and organizing activities that benefit the community.
    • Leadership and Teamwork: Applying leadership skills in social service projects.
    • Impact Assessment: Reflecting on the impact of social service activities on personal growth and community well-being.
Unit-3
Teaching Hours:5
Practical Application and Community Engagement
 
  • Engine Performance

    • Diagnostic Techniques: Methods for diagnosing engine performance issues.
    • Maintenance Practices: Routine checks and maintenance to ensure optimal engine function.
    • Performance Analysis: Evaluating engine performance data and addressing operational issues.
  • Obstacle Course

    • Course Navigation: Techniques for efficiently navigating and overcoming obstacles.
    • Agility and Coordination: Exercises to enhance physical agility and coordination.
    • Performance Evaluation: Assessing personal performance and identifying areas for improvement.
  • Social Service Activity

    • Community Engagement: Planning and organizing activities that benefit the community.
    • Leadership and Teamwork: Applying leadership skills in social service projects.
    • Impact Assessment: Reflecting on the impact of social service activities on personal growth and community well-being.
Unit-3
Teaching Hours:5
Practical Application and Community Engagement
 
  • Engine Performance

    • Diagnostic Techniques: Methods for diagnosing engine performance issues.
    • Maintenance Practices: Routine checks and maintenance to ensure optimal engine function.
    • Performance Analysis: Evaluating engine performance data and addressing operational issues.
  • Obstacle Course

    • Course Navigation: Techniques for efficiently navigating and overcoming obstacles.
    • Agility and Coordination: Exercises to enhance physical agility and coordination.
    • Performance Evaluation: Assessing personal performance and identifying areas for improvement.
  • Social Service Activity

    • Community Engagement: Planning and organizing activities that benefit the community.
    • Leadership and Teamwork: Applying leadership skills in social service projects.
    • Impact Assessment: Reflecting on the impact of social service activities on personal growth and community well-being.
Unit-3
Teaching Hours:5
Practical Application and Community Engagement
 
  • Engine Performance

    • Diagnostic Techniques: Methods for diagnosing engine performance issues.
    • Maintenance Practices: Routine checks and maintenance to ensure optimal engine function.
    • Performance Analysis: Evaluating engine performance data and addressing operational issues.
  • Obstacle Course

    • Course Navigation: Techniques for efficiently navigating and overcoming obstacles.
    • Agility and Coordination: Exercises to enhance physical agility and coordination.
    • Performance Evaluation: Assessing personal performance and identifying areas for improvement.
  • Social Service Activity

    • Community Engagement: Planning and organizing activities that benefit the community.
    • Leadership and Teamwork: Applying leadership skills in social service projects.
    • Impact Assessment: Reflecting on the impact of social service activities on personal growth and community well-being.
Unit-3
Teaching Hours:5
Practical Application and Community Engagement
 
  • Engine Performance

    • Diagnostic Techniques: Methods for diagnosing engine performance issues.
    • Maintenance Practices: Routine checks and maintenance to ensure optimal engine function.
    • Performance Analysis: Evaluating engine performance data and addressing operational issues.
  • Obstacle Course

    • Course Navigation: Techniques for efficiently navigating and overcoming obstacles.
    • Agility and Coordination: Exercises to enhance physical agility and coordination.
    • Performance Evaluation: Assessing personal performance and identifying areas for improvement.
  • Social Service Activity

    • Community Engagement: Planning and organizing activities that benefit the community.
    • Leadership and Teamwork: Applying leadership skills in social service projects.
    • Impact Assessment: Reflecting on the impact of social service activities on personal growth and community well-being.
Unit-3
Teaching Hours:5
Practical Application and Community Engagement
 
  • Engine Performance

    • Diagnostic Techniques: Methods for diagnosing engine performance issues.
    • Maintenance Practices: Routine checks and maintenance to ensure optimal engine function.
    • Performance Analysis: Evaluating engine performance data and addressing operational issues.
  • Obstacle Course

    • Course Navigation: Techniques for efficiently navigating and overcoming obstacles.
    • Agility and Coordination: Exercises to enhance physical agility and coordination.
    • Performance Evaluation: Assessing personal performance and identifying areas for improvement.
  • Social Service Activity

    • Community Engagement: Planning and organizing activities that benefit the community.
    • Leadership and Teamwork: Applying leadership skills in social service projects.
    • Impact Assessment: Reflecting on the impact of social service activities on personal growth and community well-being.
Unit-3
Teaching Hours:5
Practical Application and Community Engagement
 
  • Engine Performance

    • Diagnostic Techniques: Methods for diagnosing engine performance issues.
    • Maintenance Practices: Routine checks and maintenance to ensure optimal engine function.
    • Performance Analysis: Evaluating engine performance data and addressing operational issues.
  • Obstacle Course

    • Course Navigation: Techniques for efficiently navigating and overcoming obstacles.
    • Agility and Coordination: Exercises to enhance physical agility and coordination.
    • Performance Evaluation: Assessing personal performance and identifying areas for improvement.
  • Social Service Activity

    • Community Engagement: Planning and organizing activities that benefit the community.
    • Leadership and Teamwork: Applying leadership skills in social service projects.
    • Impact Assessment: Reflecting on the impact of social service activities on personal growth and community well-being.
Unit-3
Teaching Hours:5
Practical Application and Community Engagement
 
  • Engine Performance

    • Diagnostic Techniques: Methods for diagnosing engine performance issues.
    • Maintenance Practices: Routine checks and maintenance to ensure optimal engine function.
    • Performance Analysis: Evaluating engine performance data and addressing operational issues.
  • Obstacle Course

    • Course Navigation: Techniques for efficiently navigating and overcoming obstacles.
    • Agility and Coordination: Exercises to enhance physical agility and coordination.
    • Performance Evaluation: Assessing personal performance and identifying areas for improvement.
  • Social Service Activity

    • Community Engagement: Planning and organizing activities that benefit the community.
    • Leadership and Teamwork: Applying leadership skills in social service projects.
    • Impact Assessment: Reflecting on the impact of social service activities on personal growth and community well-being.
Unit-3
Teaching Hours:5
Practical Application and Community Engagement
 
  • Engine Performance

    • Diagnostic Techniques: Methods for diagnosing engine performance issues.
    • Maintenance Practices: Routine checks and maintenance to ensure optimal engine function.
    • Performance Analysis: Evaluating engine performance data and addressing operational issues.
  • Obstacle Course

    • Course Navigation: Techniques for efficiently navigating and overcoming obstacles.
    • Agility and Coordination: Exercises to enhance physical agility and coordination.
    • Performance Evaluation: Assessing personal performance and identifying areas for improvement.
  • Social Service Activity

    • Community Engagement: Planning and organizing activities that benefit the community.
    • Leadership and Teamwork: Applying leadership skills in social service projects.
    • Impact Assessment: Reflecting on the impact of social service activities on personal growth and community well-being.
Unit-3
Teaching Hours:5
Practical Application and Community Engagement
 
  • Engine Performance

    • Diagnostic Techniques: Methods for diagnosing engine performance issues.
    • Maintenance Practices: Routine checks and maintenance to ensure optimal engine function.
    • Performance Analysis: Evaluating engine performance data and addressing operational issues.
  • Obstacle Course

    • Course Navigation: Techniques for efficiently navigating and overcoming obstacles.
    • Agility and Coordination: Exercises to enhance physical agility and coordination.
    • Performance Evaluation: Assessing personal performance and identifying areas for improvement.
  • Social Service Activity

    • Community Engagement: Planning and organizing activities that benefit the community.
    • Leadership and Teamwork: Applying leadership skills in social service projects.
    • Impact Assessment: Reflecting on the impact of social service activities on personal growth and community well-being.
Unit-3
Teaching Hours:5
Practical Application and Community Engagement
 
  • Engine Performance

    • Diagnostic Techniques: Methods for diagnosing engine performance issues.
    • Maintenance Practices: Routine checks and maintenance to ensure optimal engine function.
    • Performance Analysis: Evaluating engine performance data and addressing operational issues.
  • Obstacle Course

    • Course Navigation: Techniques for efficiently navigating and overcoming obstacles.
    • Agility and Coordination: Exercises to enhance physical agility and coordination.
    • Performance Evaluation: Assessing personal performance and identifying areas for improvement.
  • Social Service Activity

    • Community Engagement: Planning and organizing activities that benefit the community.
    • Leadership and Teamwork: Applying leadership skills in social service projects.
    • Impact Assessment: Reflecting on the impact of social service activities on personal growth and community well-being.
Text Books And Reference Books:

1.Airwing Cadet Handbook, Specialized Subject SD/SW, Maxwell Press, 2016.

2. Airwing Cadet Handbook, Common Subject SD/SW, Maxwell Press, 2015.

Essential Reading / Recommended Reading

1.Airwing Cadet Handbook, Specialized Subject SD/SW, Maxwell Press, 2016.

2. Airwing Cadet Handbook, Common Subject SD/SW, Maxwell Press, 2015.

Evaluation Pattern

Attendance

(5)

Camp Attended(5)

Performance
Contribution
(10)

Personal and
Unit
Development (10)

Written Exam Marks  (20)

Total(50)

 

 

 

 

 

Evaluation Criteria

Excellent

Good

Average

Needs Improvement

Poor

9-10

7-8

6-7

5

0

Attendance

Has Participated in >= 95% of the NCC activities

Has Participated in >= 90%  and <95% of the NCC activities

Has Participated in >= 85%  and <90% of the NCC activities

Has Participated in >= 80%  and <85% of the NCC activities

Has attendance percentage less than 80%

Camp Attended(20)

10

9

6-8

5

0

National camp(RD)

National cam p AIVSC

Other National camps

Unit level Camps

No camps

Performance Contribution

8 – 10

6 – 7

4 – 5

1 – 3

0

Was a self-starter; consistently sought new challenges and asked for additional work assignments; regularly approached and solved problems independently; frequently proposed innovative and creative ideas, solutions, and/or options

Worked without extensive supervision; in some cases, found problems to solve and sometimes asked for additional work assignments; normally set his/her own goals and, in a few cases, tried to exceed requirements; offered some creative ideas

Had little observable drive and required close supervision; showed little if any interest in meeting standards; did not seek out additional work and frequently procrastinated in completing assignments; suggested no new ideas or options

Wasn’t regular.

No new ideas projected or discussed.

Didn’t complete the given tasks in the mentioned time limit.

Hasn’t visited the company.

 

8 – 10

6 – 7

4 – 5

1 – 3

0

Personal and
Professional
Development

Will develop a practical “working knowledge” and understanding of NCC expectations.

 

 

Will develop a practical “working knowledge” and understanding of workplace expectations.

 

 

Will develop a general understanding of workplace expectations.

 

 

Activities participated did not provide/or allow for understanding of workplace expectations.

 

 

Hasn’t Contributed to NCC

OEC372 - ABILITY ENHANCEMENT COURSE III (2023 Batch)

Total Teaching Hours for Semester:45
No of Lecture Hours/Week:2
Max Marks:50
Credits:1

Course Objectives/Course Description

 

Course Description:

This course covers technical reading and writing practices, professional communication for employment and at the workplace, and foundational mathematical concepts. It includes technical writing, report and proposal writing, listening and reading skills, job application preparation, group discussions, and presentation skills. It also addresses key mathematical topics such as number systems, percentages, data interpretation, ratios, speed, time, distance, and work-related problems. The course concludes with comprehensive training in C programming, covering data types, control flow, arrays, functions, structures, pointers, and file management.

Course Objective:

1. Develop Technical Reading Skills: Equip students with effective reading strategies for comprehending complex technical documents.

2. Enhance Technical Writing Abilities: Teach the processes involved in writing clear and concise technical reports and proposals.

3. Improve Grammar and Editing Skills: Strengthen students' understanding of grammar, voice, speech, and common errors in technical writing.

4. Professional Communication Mastery: Foster skills in professional communication, including job application processes, resume writing, and email etiquette.

5. Group and Interpersonal Communication: Cultivate effective group discussion, interview techniques, and interpersonal communication skills for professional settings.

Learning Outcome

CO1: Proficient Technical Readers and Writers: Students will be able to effectively read and write technical documents, including reports and proposals.

CO2: Grammar and Error Detection: Students will demonstrate improved grammar usage and the ability to identify and correct errors in technical writing.

CO3: Professional Job Application Skills: Students will be capable of creating professional job application documents, such as resumes and cover letters.

CO4: Enhanced Listening and Presentation Skills: Students will show improved listening comprehension and presentation abilities, crucial for professional environments

CO5: Effective Group and Interpersonal Communicators: Students will be skilled in group discussions, job interviews, and interpersonal communication, enhancing their employability and workplace interactions.

Unit-1
Teaching Hours:6
Technical Reading and Writing Practices :
 


1. Reading Process and Reading Strategies, Introduction to Technical writing process,
Understanding of writing process, Effective Technical Reading and Writing Practices , Introduction to
Technical Reports writing, Significance of Reports, Types of Reports.
2. Introduction to Technical Proposals Writing, Types of Technical Proposals, Characteristics of Technical
Proposals. Scientific Writing Process.
3. Grammar – Voice and Speech (Active and Passive Voices) and Reported Speech, Spotting Error Exercises,
Sentence Improvement Exercises, Cloze Test and Theme Detection Exercises.

Unit-1
Teaching Hours:6
Technical Reading and Writing Practices :
 


1. Reading Process and Reading Strategies, Introduction to Technical writing process,
Understanding of writing process, Effective Technical Reading and Writing Practices , Introduction to
Technical Reports writing, Significance of Reports, Types of Reports.
2. Introduction to Technical Proposals Writing, Types of Technical Proposals, Characteristics of Technical
Proposals. Scientific Writing Process.
3. Grammar – Voice and Speech (Active and Passive Voices) and Reported Speech, Spotting Error Exercises,
Sentence Improvement Exercises, Cloze Test and Theme Detection Exercises.

Unit-1
Teaching Hours:6
Technical Reading and Writing Practices :
 


1. Reading Process and Reading Strategies, Introduction to Technical writing process,
Understanding of writing process, Effective Technical Reading and Writing Practices , Introduction to
Technical Reports writing, Significance of Reports, Types of Reports.
2. Introduction to Technical Proposals Writing, Types of Technical Proposals, Characteristics of Technical
Proposals. Scientific Writing Process.
3. Grammar – Voice and Speech (Active and Passive Voices) and Reported Speech, Spotting Error Exercises,
Sentence Improvement Exercises, Cloze Test and Theme Detection Exercises.

Unit-1
Teaching Hours:6
Technical Reading and Writing Practices :
 


1. Reading Process and Reading Strategies, Introduction to Technical writing process,
Understanding of writing process, Effective Technical Reading and Writing Practices , Introduction to
Technical Reports writing, Significance of Reports, Types of Reports.
2. Introduction to Technical Proposals Writing, Types of Technical Proposals, Characteristics of Technical
Proposals. Scientific Writing Process.
3. Grammar – Voice and Speech (Active and Passive Voices) and Reported Speech, Spotting Error Exercises,
Sentence Improvement Exercises, Cloze Test and Theme Detection Exercises.

Unit-1
Teaching Hours:6
Technical Reading and Writing Practices :
 


1. Reading Process and Reading Strategies, Introduction to Technical writing process,
Understanding of writing process, Effective Technical Reading and Writing Practices , Introduction to
Technical Reports writing, Significance of Reports, Types of Reports.
2. Introduction to Technical Proposals Writing, Types of Technical Proposals, Characteristics of Technical
Proposals. Scientific Writing Process.
3. Grammar – Voice and Speech (Active and Passive Voices) and Reported Speech, Spotting Error Exercises,
Sentence Improvement Exercises, Cloze Test and Theme Detection Exercises.

Unit-1
Teaching Hours:6
Technical Reading and Writing Practices :
 


1. Reading Process and Reading Strategies, Introduction to Technical writing process,
Understanding of writing process, Effective Technical Reading and Writing Practices , Introduction to
Technical Reports writing, Significance of Reports, Types of Reports.
2. Introduction to Technical Proposals Writing, Types of Technical Proposals, Characteristics of Technical
Proposals. Scientific Writing Process.
3. Grammar – Voice and Speech (Active and Passive Voices) and Reported Speech, Spotting Error Exercises,
Sentence Improvement Exercises, Cloze Test and Theme Detection Exercises.

Unit-1
Teaching Hours:6
Technical Reading and Writing Practices :
 


1. Reading Process and Reading Strategies, Introduction to Technical writing process,
Understanding of writing process, Effective Technical Reading and Writing Practices , Introduction to
Technical Reports writing, Significance of Reports, Types of Reports.
2. Introduction to Technical Proposals Writing, Types of Technical Proposals, Characteristics of Technical
Proposals. Scientific Writing Process.
3. Grammar – Voice and Speech (Active and Passive Voices) and Reported Speech, Spotting Error Exercises,
Sentence Improvement Exercises, Cloze Test and Theme Detection Exercises.

Unit-1
Teaching Hours:6
Technical Reading and Writing Practices :
 


1. Reading Process and Reading Strategies, Introduction to Technical writing process,
Understanding of writing process, Effective Technical Reading and Writing Practices , Introduction to
Technical Reports writing, Significance of Reports, Types of Reports.
2. Introduction to Technical Proposals Writing, Types of Technical Proposals, Characteristics of Technical
Proposals. Scientific Writing Process.
3. Grammar – Voice and Speech (Active and Passive Voices) and Reported Speech, Spotting Error Exercises,
Sentence Improvement Exercises, Cloze Test and Theme Detection Exercises.

Unit-1
Teaching Hours:6
Technical Reading and Writing Practices :
 


1. Reading Process and Reading Strategies, Introduction to Technical writing process,
Understanding of writing process, Effective Technical Reading and Writing Practices , Introduction to
Technical Reports writing, Significance of Reports, Types of Reports.
2. Introduction to Technical Proposals Writing, Types of Technical Proposals, Characteristics of Technical
Proposals. Scientific Writing Process.
3. Grammar – Voice and Speech (Active and Passive Voices) and Reported Speech, Spotting Error Exercises,
Sentence Improvement Exercises, Cloze Test and Theme Detection Exercises.

Unit-1
Teaching Hours:6
Technical Reading and Writing Practices :
 


1. Reading Process and Reading Strategies, Introduction to Technical writing process,
Understanding of writing process, Effective Technical Reading and Writing Practices , Introduction to
Technical Reports writing, Significance of Reports, Types of Reports.
2. Introduction to Technical Proposals Writing, Types of Technical Proposals, Characteristics of Technical
Proposals. Scientific Writing Process.
3. Grammar – Voice and Speech (Active and Passive Voices) and Reported Speech, Spotting Error Exercises,
Sentence Improvement Exercises, Cloze Test and Theme Detection Exercises.

Unit-1
Teaching Hours:6
Technical Reading and Writing Practices :
 


1. Reading Process and Reading Strategies, Introduction to Technical writing process,
Understanding of writing process, Effective Technical Reading and Writing Practices , Introduction to
Technical Reports writing, Significance of Reports, Types of Reports.
2. Introduction to Technical Proposals Writing, Types of Technical Proposals, Characteristics of Technical
Proposals. Scientific Writing Process.
3. Grammar – Voice and Speech (Active and Passive Voices) and Reported Speech, Spotting Error Exercises,
Sentence Improvement Exercises, Cloze Test and Theme Detection Exercises.

Unit-1
Teaching Hours:6
Technical Reading and Writing Practices :
 


1. Reading Process and Reading Strategies, Introduction to Technical writing process,
Understanding of writing process, Effective Technical Reading and Writing Practices , Introduction to
Technical Reports writing, Significance of Reports, Types of Reports.
2. Introduction to Technical Proposals Writing, Types of Technical Proposals, Characteristics of Technical
Proposals. Scientific Writing Process.
3. Grammar – Voice and Speech (Active and Passive Voices) and Reported Speech, Spotting Error Exercises,
Sentence Improvement Exercises, Cloze Test and Theme Detection Exercises.

Unit-1
Teaching Hours:6
Technical Reading and Writing Practices :
 


1. Reading Process and Reading Strategies, Introduction to Technical writing process,
Understanding of writing process, Effective Technical Reading and Writing Practices , Introduction to
Technical Reports writing, Significance of Reports, Types of Reports.
2. Introduction to Technical Proposals Writing, Types of Technical Proposals, Characteristics of Technical
Proposals. Scientific Writing Process.
3. Grammar – Voice and Speech (Active and Passive Voices) and Reported Speech, Spotting Error Exercises,
Sentence Improvement Exercises, Cloze Test and Theme Detection Exercises.

Unit-2
Teaching Hours:6
Professional Communication for Employment
 

Professional Communication for Employment :

1. The Listening Comprehension, Importance of Listening Comprehension, Types of Listening, Understanding

and Interpreting, Listening Barriers, Improving Listening Skills. Attributes of a good and poor listener.

2. Reading Skills and Reading Comprehension, Active and Passive Reading, Tips for effective reading.

3. Preparing for Job Application, Components of a Formal Letter, Formats and Types of official, employment,

Business Letters, Resume vs Bio Data, Profile, CV and others, Types of resume, Writing effective resume

for employment, Model Letter of Application (Cover Letter) with Resume, Emails, Blog Writing, Memos

(Types of Memos) and other recent communication types.

 

Professional Communication at Workplace :

1. Group Discussions – Importance, Characteristics, Strategies of a Group Discussions. Group

Discussions is a Tool for Selection. Employment/ Job Interviews - Importance, Characteristics,

Strategies of a Employment/ Job Interviews. Intra and Interpersonal Communication Skills -

Importance, Characteristics, Strategies of a Intra and Interpersonal Communication Skills. NonVerbal Communication Skills (Body Language) and its importance in GD and PI/JI/EI.

2. Presentation skills and Formal Presentations by Students - Importance, Characteristics,

Strategies of Presentation Skills. Dialogues in Various Situations (Activity based Practical

Sessions in class by Students)."                

Unit-2
Teaching Hours:6
Professional Communication for Employment
 

Professional Communication for Employment :

1. The Listening Comprehension, Importance of Listening Comprehension, Types of Listening, Understanding

and Interpreting, Listening Barriers, Improving Listening Skills. Attributes of a good and poor listener.

2. Reading Skills and Reading Comprehension, Active and Passive Reading, Tips for effective reading.

3. Preparing for Job Application, Components of a Formal Letter, Formats and Types of official, employment,

Business Letters, Resume vs Bio Data, Profile, CV and others, Types of resume, Writing effective resume

for employment, Model Letter of Application (Cover Letter) with Resume, Emails, Blog Writing, Memos

(Types of Memos) and other recent communication types.

 

Professional Communication at Workplace :

1. Group Discussions – Importance, Characteristics, Strategies of a Group Discussions. Group

Discussions is a Tool for Selection. Employment/ Job Interviews - Importance, Characteristics,

Strategies of a Employment/ Job Interviews. Intra and Interpersonal Communication Skills -

Importance, Characteristics, Strategies of a Intra and Interpersonal Communication Skills. NonVerbal Communication Skills (Body Language) and its importance in GD and PI/JI/EI.

2. Presentation skills and Formal Presentations by Students - Importance, Characteristics,

Strategies of Presentation Skills. Dialogues in Various Situations (Activity based Practical

Sessions in class by Students)."                

Unit-2
Teaching Hours:6
Professional Communication for Employment
 

Professional Communication for Employment :

1. The Listening Comprehension, Importance of Listening Comprehension, Types of Listening, Understanding

and Interpreting, Listening Barriers, Improving Listening Skills. Attributes of a good and poor listener.

2. Reading Skills and Reading Comprehension, Active and Passive Reading, Tips for effective reading.

3. Preparing for Job Application, Components of a Formal Letter, Formats and Types of official, employment,

Business Letters, Resume vs Bio Data, Profile, CV and others, Types of resume, Writing effective resume

for employment, Model Letter of Application (Cover Letter) with Resume, Emails, Blog Writing, Memos

(Types of Memos) and other recent communication types.

 

Professional Communication at Workplace :

1. Group Discussions – Importance, Characteristics, Strategies of a Group Discussions. Group

Discussions is a Tool for Selection. Employment/ Job Interviews - Importance, Characteristics,

Strategies of a Employment/ Job Interviews. Intra and Interpersonal Communication Skills -

Importance, Characteristics, Strategies of a Intra and Interpersonal Communication Skills. NonVerbal Communication Skills (Body Language) and its importance in GD and PI/JI/EI.

2. Presentation skills and Formal Presentations by Students - Importance, Characteristics,

Strategies of Presentation Skills. Dialogues in Various Situations (Activity based Practical

Sessions in class by Students)."                

Unit-2
Teaching Hours:6
Professional Communication for Employment
 

Professional Communication for Employment :

1. The Listening Comprehension, Importance of Listening Comprehension, Types of Listening, Understanding

and Interpreting, Listening Barriers, Improving Listening Skills. Attributes of a good and poor listener.

2. Reading Skills and Reading Comprehension, Active and Passive Reading, Tips for effective reading.

3. Preparing for Job Application, Components of a Formal Letter, Formats and Types of official, employment,

Business Letters, Resume vs Bio Data, Profile, CV and others, Types of resume, Writing effective resume

for employment, Model Letter of Application (Cover Letter) with Resume, Emails, Blog Writing, Memos

(Types of Memos) and other recent communication types.

 

Professional Communication at Workplace :

1. Group Discussions – Importance, Characteristics, Strategies of a Group Discussions. Group

Discussions is a Tool for Selection. Employment/ Job Interviews - Importance, Characteristics,

Strategies of a Employment/ Job Interviews. Intra and Interpersonal Communication Skills -

Importance, Characteristics, Strategies of a Intra and Interpersonal Communication Skills. NonVerbal Communication Skills (Body Language) and its importance in GD and PI/JI/EI.

2. Presentation skills and Formal Presentations by Students - Importance, Characteristics,

Strategies of Presentation Skills. Dialogues in Various Situations (Activity based Practical

Sessions in class by Students)."                

Unit-2
Teaching Hours:6
Professional Communication for Employment
 

Professional Communication for Employment :

1. The Listening Comprehension, Importance of Listening Comprehension, Types of Listening, Understanding

and Interpreting, Listening Barriers, Improving Listening Skills. Attributes of a good and poor listener.

2. Reading Skills and Reading Comprehension, Active and Passive Reading, Tips for effective reading.

3. Preparing for Job Application, Components of a Formal Letter, Formats and Types of official, employment,

Business Letters, Resume vs Bio Data, Profile, CV and others, Types of resume, Writing effective resume

for employment, Model Letter of Application (Cover Letter) with Resume, Emails, Blog Writing, Memos

(Types of Memos) and other recent communication types.

 

Professional Communication at Workplace :

1. Group Discussions – Importance, Characteristics, Strategies of a Group Discussions. Group

Discussions is a Tool for Selection. Employment/ Job Interviews - Importance, Characteristics,

Strategies of a Employment/ Job Interviews. Intra and Interpersonal Communication Skills -

Importance, Characteristics, Strategies of a Intra and Interpersonal Communication Skills. NonVerbal Communication Skills (Body Language) and its importance in GD and PI/JI/EI.

2. Presentation skills and Formal Presentations by Students - Importance, Characteristics,

Strategies of Presentation Skills. Dialogues in Various Situations (Activity based Practical

Sessions in class by Students)."                

Unit-2
Teaching Hours:6
Professional Communication for Employment
 

Professional Communication for Employment :

1. The Listening Comprehension, Importance of Listening Comprehension, Types of Listening, Understanding

and Interpreting, Listening Barriers, Improving Listening Skills. Attributes of a good and poor listener.

2. Reading Skills and Reading Comprehension, Active and Passive Reading, Tips for effective reading.

3. Preparing for Job Application, Components of a Formal Letter, Formats and Types of official, employment,

Business Letters, Resume vs Bio Data, Profile, CV and others, Types of resume, Writing effective resume

for employment, Model Letter of Application (Cover Letter) with Resume, Emails, Blog Writing, Memos

(Types of Memos) and other recent communication types.

 

Professional Communication at Workplace :

1. Group Discussions – Importance, Characteristics, Strategies of a Group Discussions. Group

Discussions is a Tool for Selection. Employment/ Job Interviews - Importance, Characteristics,

Strategies of a Employment/ Job Interviews. Intra and Interpersonal Communication Skills -

Importance, Characteristics, Strategies of a Intra and Interpersonal Communication Skills. NonVerbal Communication Skills (Body Language) and its importance in GD and PI/JI/EI.

2. Presentation skills and Formal Presentations by Students - Importance, Characteristics,

Strategies of Presentation Skills. Dialogues in Various Situations (Activity based Practical

Sessions in class by Students)."                

Unit-2
Teaching Hours:6
Professional Communication for Employment
 

Professional Communication for Employment :

1. The Listening Comprehension, Importance of Listening Comprehension, Types of Listening, Understanding

and Interpreting, Listening Barriers, Improving Listening Skills. Attributes of a good and poor listener.

2. Reading Skills and Reading Comprehension, Active and Passive Reading, Tips for effective reading.

3. Preparing for Job Application, Components of a Formal Letter, Formats and Types of official, employment,

Business Letters, Resume vs Bio Data, Profile, CV and others, Types of resume, Writing effective resume

for employment, Model Letter of Application (Cover Letter) with Resume, Emails, Blog Writing, Memos

(Types of Memos) and other recent communication types.

 

Professional Communication at Workplace :

1. Group Discussions – Importance, Characteristics, Strategies of a Group Discussions. Group

Discussions is a Tool for Selection. Employment/ Job Interviews - Importance, Characteristics,

Strategies of a Employment/ Job Interviews. Intra and Interpersonal Communication Skills -

Importance, Characteristics, Strategies of a Intra and Interpersonal Communication Skills. NonVerbal Communication Skills (Body Language) and its importance in GD and PI/JI/EI.

2. Presentation skills and Formal Presentations by Students - Importance, Characteristics,

Strategies of Presentation Skills. Dialogues in Various Situations (Activity based Practical

Sessions in class by Students)."                

Unit-2
Teaching Hours:6
Professional Communication for Employment
 

Professional Communication for Employment :

1. The Listening Comprehension, Importance of Listening Comprehension, Types of Listening, Understanding

and Interpreting, Listening Barriers, Improving Listening Skills. Attributes of a good and poor listener.

2. Reading Skills and Reading Comprehension, Active and Passive Reading, Tips for effective reading.

3. Preparing for Job Application, Components of a Formal Letter, Formats and Types of official, employment,

Business Letters, Resume vs Bio Data, Profile, CV and others, Types of resume, Writing effective resume

for employment, Model Letter of Application (Cover Letter) with Resume, Emails, Blog Writing, Memos

(Types of Memos) and other recent communication types.

 

Professional Communication at Workplace :

1. Group Discussions – Importance, Characteristics, Strategies of a Group Discussions. Group

Discussions is a Tool for Selection. Employment/ Job Interviews - Importance, Characteristics,

Strategies of a Employment/ Job Interviews. Intra and Interpersonal Communication Skills -

Importance, Characteristics, Strategies of a Intra and Interpersonal Communication Skills. NonVerbal Communication Skills (Body Language) and its importance in GD and PI/JI/EI.

2. Presentation skills and Formal Presentations by Students - Importance, Characteristics,

Strategies of Presentation Skills. Dialogues in Various Situations (Activity based Practical

Sessions in class by Students)."                

Unit-2
Teaching Hours:6
Professional Communication for Employment
 

Professional Communication for Employment :

1. The Listening Comprehension, Importance of Listening Comprehension, Types of Listening, Understanding

and Interpreting, Listening Barriers, Improving Listening Skills. Attributes of a good and poor listener.

2. Reading Skills and Reading Comprehension, Active and Passive Reading, Tips for effective reading.

3. Preparing for Job Application, Components of a Formal Letter, Formats and Types of official, employment,

Business Letters, Resume vs Bio Data, Profile, CV and others, Types of resume, Writing effective resume

for employment, Model Letter of Application (Cover Letter) with Resume, Emails, Blog Writing, Memos

(Types of Memos) and other recent communication types.

 

Professional Communication at Workplace :

1. Group Discussions – Importance, Characteristics, Strategies of a Group Discussions. Group

Discussions is a Tool for Selection. Employment/ Job Interviews - Importance, Characteristics,

Strategies of a Employment/ Job Interviews. Intra and Interpersonal Communication Skills -

Importance, Characteristics, Strategies of a Intra and Interpersonal Communication Skills. NonVerbal Communication Skills (Body Language) and its importance in GD and PI/JI/EI.

2. Presentation skills and Formal Presentations by Students - Importance, Characteristics,

Strategies of Presentation Skills. Dialogues in Various Situations (Activity based Practical

Sessions in class by Students)."                

Unit-2
Teaching Hours:6
Professional Communication for Employment
 

Professional Communication for Employment :

1. The Listening Comprehension, Importance of Listening Comprehension, Types of Listening, Understanding

and Interpreting, Listening Barriers, Improving Listening Skills. Attributes of a good and poor listener.

2. Reading Skills and Reading Comprehension, Active and Passive Reading, Tips for effective reading.

3. Preparing for Job Application, Components of a Formal Letter, Formats and Types of official, employment,

Business Letters, Resume vs Bio Data, Profile, CV and others, Types of resume, Writing effective resume

for employment, Model Letter of Application (Cover Letter) with Resume, Emails, Blog Writing, Memos

(Types of Memos) and other recent communication types.

 

Professional Communication at Workplace :

1. Group Discussions – Importance, Characteristics, Strategies of a Group Discussions. Group

Discussions is a Tool for Selection. Employment/ Job Interviews - Importance, Characteristics,

Strategies of a Employment/ Job Interviews. Intra and Interpersonal Communication Skills -

Importance, Characteristics, Strategies of a Intra and Interpersonal Communication Skills. NonVerbal Communication Skills (Body Language) and its importance in GD and PI/JI/EI.

2. Presentation skills and Formal Presentations by Students - Importance, Characteristics,

Strategies of Presentation Skills. Dialogues in Various Situations (Activity based Practical

Sessions in class by Students)."                

Unit-2
Teaching Hours:6
Professional Communication for Employment
 

Professional Communication for Employment :

1. The Listening Comprehension, Importance of Listening Comprehension, Types of Listening, Understanding

and Interpreting, Listening Barriers, Improving Listening Skills. Attributes of a good and poor listener.

2. Reading Skills and Reading Comprehension, Active and Passive Reading, Tips for effective reading.

3. Preparing for Job Application, Components of a Formal Letter, Formats and Types of official, employment,

Business Letters, Resume vs Bio Data, Profile, CV and others, Types of resume, Writing effective resume

for employment, Model Letter of Application (Cover Letter) with Resume, Emails, Blog Writing, Memos

(Types of Memos) and other recent communication types.

 

Professional Communication at Workplace :

1. Group Discussions – Importance, Characteristics, Strategies of a Group Discussions. Group

Discussions is a Tool for Selection. Employment/ Job Interviews - Importance, Characteristics,

Strategies of a Employment/ Job Interviews. Intra and Interpersonal Communication Skills -

Importance, Characteristics, Strategies of a Intra and Interpersonal Communication Skills. NonVerbal Communication Skills (Body Language) and its importance in GD and PI/JI/EI.

2. Presentation skills and Formal Presentations by Students - Importance, Characteristics,

Strategies of Presentation Skills. Dialogues in Various Situations (Activity based Practical

Sessions in class by Students)."                

Unit-2
Teaching Hours:6
Professional Communication for Employment
 

Professional Communication for Employment :

1. The Listening Comprehension, Importance of Listening Comprehension, Types of Listening, Understanding

and Interpreting, Listening Barriers, Improving Listening Skills. Attributes of a good and poor listener.

2. Reading Skills and Reading Comprehension, Active and Passive Reading, Tips for effective reading.

3. Preparing for Job Application, Components of a Formal Letter, Formats and Types of official, employment,

Business Letters, Resume vs Bio Data, Profile, CV and others, Types of resume, Writing effective resume

for employment, Model Letter of Application (Cover Letter) with Resume, Emails, Blog Writing, Memos

(Types of Memos) and other recent communication types.

 

Professional Communication at Workplace :

1. Group Discussions – Importance, Characteristics, Strategies of a Group Discussions. Group

Discussions is a Tool for Selection. Employment/ Job Interviews - Importance, Characteristics,

Strategies of a Employment/ Job Interviews. Intra and Interpersonal Communication Skills -

Importance, Characteristics, Strategies of a Intra and Interpersonal Communication Skills. NonVerbal Communication Skills (Body Language) and its importance in GD and PI/JI/EI.

2. Presentation skills and Formal Presentations by Students - Importance, Characteristics,

Strategies of Presentation Skills. Dialogues in Various Situations (Activity based Practical

Sessions in class by Students)."                

Unit-2
Teaching Hours:6
Professional Communication for Employment
 

Professional Communication for Employment :

1. The Listening Comprehension, Importance of Listening Comprehension, Types of Listening, Understanding

and Interpreting, Listening Barriers, Improving Listening Skills. Attributes of a good and poor listener.

2. Reading Skills and Reading Comprehension, Active and Passive Reading, Tips for effective reading.

3. Preparing for Job Application, Components of a Formal Letter, Formats and Types of official, employment,

Business Letters, Resume vs Bio Data, Profile, CV and others, Types of resume, Writing effective resume

for employment, Model Letter of Application (Cover Letter) with Resume, Emails, Blog Writing, Memos

(Types of Memos) and other recent communication types.

 

Professional Communication at Workplace :

1. Group Discussions – Importance, Characteristics, Strategies of a Group Discussions. Group

Discussions is a Tool for Selection. Employment/ Job Interviews - Importance, Characteristics,

Strategies of a Employment/ Job Interviews. Intra and Interpersonal Communication Skills -

Importance, Characteristics, Strategies of a Intra and Interpersonal Communication Skills. NonVerbal Communication Skills (Body Language) and its importance in GD and PI/JI/EI.

2. Presentation skills and Formal Presentations by Students - Importance, Characteristics,

Strategies of Presentation Skills. Dialogues in Various Situations (Activity based Practical

Sessions in class by Students)."                

Unit-3
Teaching Hours:8
Number System
 

· Divisibility & Remainder

 · Multiples & Factors

 · Integers

 · LCM & HCF.

 · Complete a number Series

 · Find the Missing Term and Wrong Term

 Simplification

 · BODMAS Rule

 · Approximation

 · Decimals

 · Fractions

 · Surds & Indices

 

Percentage

Calculation-oriented basic percentage, Profit and Loss, Successive Selling type, Discount & MP, Dishonest Dealings, Partnerships

Interest : Simple Interest, Compound Interest, Mixed Interest, Installments.

 

Data Interpretation: Approach to interpretation - simple arithmetic, rules for comparing fractions, Calculating (approximation) fractions, short cut ways to find the percentages, Classification of data– Tables, Bar graph, line graph, Cumulative bar graph, Pie graph, Combination of graphs. Combination of table and graphs

Unit-3
Teaching Hours:8
Number System
 

· Divisibility & Remainder

 · Multiples & Factors

 · Integers

 · LCM & HCF.

 · Complete a number Series

 · Find the Missing Term and Wrong Term

 Simplification

 · BODMAS Rule

 · Approximation

 · Decimals

 · Fractions

 · Surds & Indices

 

Percentage

Calculation-oriented basic percentage, Profit and Loss, Successive Selling type, Discount & MP, Dishonest Dealings, Partnerships

Interest : Simple Interest, Compound Interest, Mixed Interest, Installments.

 

Data Interpretation: Approach to interpretation - simple arithmetic, rules for comparing fractions, Calculating (approximation) fractions, short cut ways to find the percentages, Classification of data– Tables, Bar graph, line graph, Cumulative bar graph, Pie graph, Combination of graphs. Combination of table and graphs

Unit-3
Teaching Hours:8
Number System
 

· Divisibility & Remainder

 · Multiples & Factors

 · Integers

 · LCM & HCF.

 · Complete a number Series

 · Find the Missing Term and Wrong Term

 Simplification

 · BODMAS Rule

 · Approximation

 · Decimals

 · Fractions

 · Surds & Indices

 

Percentage

Calculation-oriented basic percentage, Profit and Loss, Successive Selling type, Discount & MP, Dishonest Dealings, Partnerships

Interest : Simple Interest, Compound Interest, Mixed Interest, Installments.

 

Data Interpretation: Approach to interpretation - simple arithmetic, rules for comparing fractions, Calculating (approximation) fractions, short cut ways to find the percentages, Classification of data– Tables, Bar graph, line graph, Cumulative bar graph, Pie graph, Combination of graphs. Combination of table and graphs

Unit-3
Teaching Hours:8
Number System
 

· Divisibility & Remainder

 · Multiples & Factors

 · Integers

 · LCM & HCF.

 · Complete a number Series

 · Find the Missing Term and Wrong Term

 Simplification

 · BODMAS Rule

 · Approximation

 · Decimals

 · Fractions

 · Surds & Indices

 

Percentage

Calculation-oriented basic percentage, Profit and Loss, Successive Selling type, Discount & MP, Dishonest Dealings, Partnerships

Interest : Simple Interest, Compound Interest, Mixed Interest, Installments.

 

Data Interpretation: Approach to interpretation - simple arithmetic, rules for comparing fractions, Calculating (approximation) fractions, short cut ways to find the percentages, Classification of data– Tables, Bar graph, line graph, Cumulative bar graph, Pie graph, Combination of graphs. Combination of table and graphs

Unit-3
Teaching Hours:8
Number System
 

· Divisibility & Remainder

 · Multiples & Factors

 · Integers

 · LCM & HCF.

 · Complete a number Series

 · Find the Missing Term and Wrong Term

 Simplification

 · BODMAS Rule

 · Approximation

 · Decimals

 · Fractions

 · Surds & Indices

 

Percentage

Calculation-oriented basic percentage, Profit and Loss, Successive Selling type, Discount & MP, Dishonest Dealings, Partnerships

Interest : Simple Interest, Compound Interest, Mixed Interest, Installments.

 

Data Interpretation: Approach to interpretation - simple arithmetic, rules for comparing fractions, Calculating (approximation) fractions, short cut ways to find the percentages, Classification of data– Tables, Bar graph, line graph, Cumulative bar graph, Pie graph, Combination of graphs. Combination of table and graphs

Unit-3
Teaching Hours:8
Number System
 

· Divisibility & Remainder

 · Multiples & Factors

 · Integers

 · LCM & HCF.

 · Complete a number Series

 · Find the Missing Term and Wrong Term

 Simplification

 · BODMAS Rule

 · Approximation

 · Decimals

 · Fractions

 · Surds & Indices

 

Percentage

Calculation-oriented basic percentage, Profit and Loss, Successive Selling type, Discount & MP, Dishonest Dealings, Partnerships

Interest : Simple Interest, Compound Interest, Mixed Interest, Installments.

 

Data Interpretation: Approach to interpretation - simple arithmetic, rules for comparing fractions, Calculating (approximation) fractions, short cut ways to find the percentages, Classification of data– Tables, Bar graph, line graph, Cumulative bar graph, Pie graph, Combination of graphs. Combination of table and graphs

Unit-3
Teaching Hours:8
Number System
 

· Divisibility & Remainder

 · Multiples & Factors

 · Integers

 · LCM & HCF.

 · Complete a number Series

 · Find the Missing Term and Wrong Term

 Simplification

 · BODMAS Rule

 · Approximation

 · Decimals

 · Fractions

 · Surds & Indices

 

Percentage

Calculation-oriented basic percentage, Profit and Loss, Successive Selling type, Discount & MP, Dishonest Dealings, Partnerships

Interest : Simple Interest, Compound Interest, Mixed Interest, Installments.

 

Data Interpretation: Approach to interpretation - simple arithmetic, rules for comparing fractions, Calculating (approximation) fractions, short cut ways to find the percentages, Classification of data– Tables, Bar graph, line graph, Cumulative bar graph, Pie graph, Combination of graphs. Combination of table and graphs

Unit-3
Teaching Hours:8
Number System
 

· Divisibility & Remainder

 · Multiples & Factors

 · Integers

 · LCM & HCF.

 · Complete a number Series

 · Find the Missing Term and Wrong Term

 Simplification

 · BODMAS Rule

 · Approximation

 · Decimals

 · Fractions

 · Surds & Indices

 

Percentage

Calculation-oriented basic percentage, Profit and Loss, Successive Selling type, Discount & MP, Dishonest Dealings, Partnerships

Interest : Simple Interest, Compound Interest, Mixed Interest, Installments.

 

Data Interpretation: Approach to interpretation - simple arithmetic, rules for comparing fractions, Calculating (approximation) fractions, short cut ways to find the percentages, Classification of data– Tables, Bar graph, line graph, Cumulative bar graph, Pie graph, Combination of graphs. Combination of table and graphs

Unit-3
Teaching Hours:8
Number System
 

· Divisibility & Remainder

 · Multiples & Factors

 · Integers

 · LCM & HCF.

 · Complete a number Series

 · Find the Missing Term and Wrong Term

 Simplification

 · BODMAS Rule

 · Approximation

 · Decimals

 · Fractions

 · Surds & Indices

 

Percentage

Calculation-oriented basic percentage, Profit and Loss, Successive Selling type, Discount & MP, Dishonest Dealings, Partnerships

Interest : Simple Interest, Compound Interest, Mixed Interest, Installments.

 

Data Interpretation: Approach to interpretation - simple arithmetic, rules for comparing fractions, Calculating (approximation) fractions, short cut ways to find the percentages, Classification of data– Tables, Bar graph, line graph, Cumulative bar graph, Pie graph, Combination of graphs. Combination of table and graphs

Unit-3
Teaching Hours:8
Number System
 

· Divisibility & Remainder

 · Multiples & Factors

 · Integers

 · LCM & HCF.

 · Complete a number Series

 · Find the Missing Term and Wrong Term

 Simplification

 · BODMAS Rule

 · Approximation

 · Decimals

 · Fractions

 · Surds & Indices

 

Percentage

Calculation-oriented basic percentage, Profit and Loss, Successive Selling type, Discount & MP, Dishonest Dealings, Partnerships

Interest : Simple Interest, Compound Interest, Mixed Interest, Installments.

 

Data Interpretation: Approach to interpretation - simple arithmetic, rules for comparing fractions, Calculating (approximation) fractions, short cut ways to find the percentages, Classification of data– Tables, Bar graph, line graph, Cumulative bar graph, Pie graph, Combination of graphs. Combination of table and graphs

Unit-3
Teaching Hours:8
Number System
 

· Divisibility & Remainder

 · Multiples & Factors

 · Integers

 · LCM & HCF.

 · Complete a number Series

 · Find the Missing Term and Wrong Term

 Simplification

 · BODMAS Rule

 · Approximation

 · Decimals

 · Fractions

 · Surds & Indices

 

Percentage

Calculation-oriented basic percentage, Profit and Loss, Successive Selling type, Discount & MP, Dishonest Dealings, Partnerships

Interest : Simple Interest, Compound Interest, Mixed Interest, Installments.

 

Data Interpretation: Approach to interpretation - simple arithmetic, rules for comparing fractions, Calculating (approximation) fractions, short cut ways to find the percentages, Classification of data– Tables, Bar graph, line graph, Cumulative bar graph, Pie graph, Combination of graphs. Combination of table and graphs

Unit-3
Teaching Hours:8
Number System
 

· Divisibility & Remainder

 · Multiples & Factors

 · Integers

 · LCM & HCF.

 · Complete a number Series

 · Find the Missing Term and Wrong Term

 Simplification

 · BODMAS Rule

 · Approximation

 · Decimals

 · Fractions

 · Surds & Indices

 

Percentage

Calculation-oriented basic percentage, Profit and Loss, Successive Selling type, Discount & MP, Dishonest Dealings, Partnerships

Interest : Simple Interest, Compound Interest, Mixed Interest, Installments.

 

Data Interpretation: Approach to interpretation - simple arithmetic, rules for comparing fractions, Calculating (approximation) fractions, short cut ways to find the percentages, Classification of data– Tables, Bar graph, line graph, Cumulative bar graph, Pie graph, Combination of graphs. Combination of table and graphs

Unit-3
Teaching Hours:8
Number System
 

· Divisibility & Remainder

 · Multiples & Factors

 · Integers

 · LCM & HCF.

 · Complete a number Series

 · Find the Missing Term and Wrong Term

 Simplification

 · BODMAS Rule

 · Approximation

 · Decimals

 · Fractions

 · Surds & Indices

 

Percentage

Calculation-oriented basic percentage, Profit and Loss, Successive Selling type, Discount & MP, Dishonest Dealings, Partnerships

Interest : Simple Interest, Compound Interest, Mixed Interest, Installments.

 

Data Interpretation: Approach to interpretation - simple arithmetic, rules for comparing fractions, Calculating (approximation) fractions, short cut ways to find the percentages, Classification of data– Tables, Bar graph, line graph, Cumulative bar graph, Pie graph, Combination of graphs. Combination of table and graphs

Unit-4
Teaching Hours:8
Ratio and Proportion
 

· Simple Ratios

 · Compound Ratios

 · Comprehend and Dividend

 · Direct & Indirect Proportions

 · Problems on ages

 · Mixtures & Allegation

Speed, Time and Distance

 · Relative Speed

 · Average Speed

 · Problems on Train

 · Boat & Stream.

 Time and Work

 · Work Efficiency

 · Work & Wages

 Pipes & Cisterns

Unit-4
Teaching Hours:8
Ratio and Proportion
 

· Simple Ratios

 · Compound Ratios

 · Comprehend and Dividend

 · Direct & Indirect Proportions

 · Problems on ages

 · Mixtures & Allegation

Speed, Time and Distance

 · Relative Speed

 · Average Speed

 · Problems on Train

 · Boat & Stream.

 Time and Work

 · Work Efficiency

 · Work & Wages

 Pipes & Cisterns

Unit-4
Teaching Hours:8
Ratio and Proportion
 

· Simple Ratios

 · Compound Ratios

 · Comprehend and Dividend

 · Direct & Indirect Proportions

 · Problems on ages

 · Mixtures & Allegation

Speed, Time and Distance

 · Relative Speed

 · Average Speed

 · Problems on Train

 · Boat & Stream.

 Time and Work

 · Work Efficiency

 · Work & Wages

 Pipes & Cisterns

Unit-4
Teaching Hours:8
Ratio and Proportion
 

· Simple Ratios

 · Compound Ratios

 · Comprehend and Dividend

 · Direct & Indirect Proportions

 · Problems on ages

 · Mixtures & Allegation

Speed, Time and Distance

 · Relative Speed

 · Average Speed

 · Problems on Train

 · Boat & Stream.

 Time and Work

 · Work Efficiency

 · Work & Wages

 Pipes & Cisterns

Unit-4
Teaching Hours:8
Ratio and Proportion
 

· Simple Ratios

 · Compound Ratios

 · Comprehend and Dividend

 · Direct & Indirect Proportions

 · Problems on ages

 · Mixtures & Allegation

Speed, Time and Distance

 · Relative Speed

 · Average Speed

 · Problems on Train

 · Boat & Stream.

 Time and Work

 · Work Efficiency

 · Work & Wages

 Pipes & Cisterns

Unit-4
Teaching Hours:8
Ratio and Proportion
 

· Simple Ratios

 · Compound Ratios

 · Comprehend and Dividend

 · Direct & Indirect Proportions

 · Problems on ages

 · Mixtures & Allegation

Speed, Time and Distance

 · Relative Speed

 · Average Speed

 · Problems on Train

 · Boat & Stream.

 Time and Work

 · Work Efficiency

 · Work & Wages

 Pipes & Cisterns

Unit-4
Teaching Hours:8
Ratio and Proportion
 

· Simple Ratios

 · Compound Ratios

 · Comprehend and Dividend

 · Direct & Indirect Proportions

 · Problems on ages

 · Mixtures & Allegation

Speed, Time and Distance

 · Relative Speed

 · Average Speed

 · Problems on Train

 · Boat & Stream.

 Time and Work

 · Work Efficiency

 · Work & Wages

 Pipes & Cisterns

Unit-4
Teaching Hours:8
Ratio and Proportion
 

· Simple Ratios

 · Compound Ratios

 · Comprehend and Dividend

 · Direct & Indirect Proportions

 · Problems on ages

 · Mixtures & Allegation

Speed, Time and Distance

 · Relative Speed

 · Average Speed

 · Problems on Train

 · Boat & Stream.

 Time and Work

 · Work Efficiency

 · Work & Wages

 Pipes & Cisterns

Unit-4
Teaching Hours:8
Ratio and Proportion
 

· Simple Ratios

 · Compound Ratios

 · Comprehend and Dividend

 · Direct & Indirect Proportions

 · Problems on ages

 · Mixtures & Allegation

Speed, Time and Distance

 · Relative Speed

 · Average Speed

 · Problems on Train

 · Boat & Stream.

 Time and Work

 · Work Efficiency

 · Work & Wages

 Pipes & Cisterns

Unit-4
Teaching Hours:8
Ratio and Proportion
 

· Simple Ratios

 · Compound Ratios

 · Comprehend and Dividend

 · Direct & Indirect Proportions

 · Problems on ages

 · Mixtures & Allegation

Speed, Time and Distance

 · Relative Speed

 · Average Speed

 · Problems on Train

 · Boat & Stream.

 Time and Work

 · Work Efficiency

 · Work & Wages

 Pipes & Cisterns

Unit-4
Teaching Hours:8
Ratio and Proportion
 

· Simple Ratios

 · Compound Ratios

 · Comprehend and Dividend

 · Direct & Indirect Proportions

 · Problems on ages

 · Mixtures & Allegation

Speed, Time and Distance

 · Relative Speed

 · Average Speed

 · Problems on Train

 · Boat & Stream.

 Time and Work

 · Work Efficiency

 · Work & Wages

 Pipes & Cisterns

Unit-4
Teaching Hours:8
Ratio and Proportion
 

· Simple Ratios

 · Compound Ratios

 · Comprehend and Dividend

 · Direct & Indirect Proportions

 · Problems on ages

 · Mixtures & Allegation

Speed, Time and Distance

 · Relative Speed

 · Average Speed

 · Problems on Train

 · Boat & Stream.

 Time and Work

 · Work Efficiency

 · Work & Wages

 Pipes & Cisterns

Unit-4
Teaching Hours:8
Ratio and Proportion
 

· Simple Ratios

 · Compound Ratios

 · Comprehend and Dividend

 · Direct & Indirect Proportions

 · Problems on ages

 · Mixtures & Allegation

Speed, Time and Distance

 · Relative Speed

 · Average Speed

 · Problems on Train

 · Boat & Stream.

 Time and Work

 · Work Efficiency

 · Work & Wages

 Pipes & Cisterns

Unit-5
Teaching Hours:14
C Programming
 

Data Types, Operators and Expressions  Input and output Operations  Control Flow – Branching, Control Flow – Looping  · Statements and Blocks  · If..Else, Switch, Nesting of If..Else  · GOTO statement  · The while statement  · The For statement  · The Do statement  · Jumps in loops

 

Arrays, Strings

 · One-dimensional arrays

 · Initialization of one-dimensional arrays

 · Two-dimensional Arrays

 · Initializing Two-dimensional arrays

 · Multi-dimensional arrays

 · Dynamic arrays

 · Declaring and Initializing string variables

 · Reading Strings from Terminal

 · Writing Strings to screen

 · String handling functions

 · Operations on strings

 

User-defined Functions, Structures

 · Basics of Functions

 · Functions Returning Non-integers

 · External Variables, Scope Rules

 · Header Files, Static Variables, Register Variables

 · Block Structure, Initialization, Recursion

 · Category of functions, Functions that return multiple values

 · Nesting functions, Multi-file programs

 · Structures and Functions, Arrays of Structures

 · Pointers to Structures, Self-referential structures

 

Unions, Pointers

 · Difference between Structures and Unions

 · Accessing the address of a variable

 · Declaring and Initializing pointer variables

 · Accessing a variable through its pointers

 · Chain of pointers

 · Pointer Expressions

 · Pointer Increments and Scale Factors

 · Pointers and character strings

 · Array of pointers

 · Pointers as function arguments

 · Functions returning pointers

 · Pointers to functions, Drawback of Pointers

 

File Management in C, The Preprocessor

 Defining and Opening a File, Closing a File, Input / Output Operations on Files, Random Access to Files, Command Line Arguments. Macro Substitution, File Inclusion, Compiler Control Directives, ANSI Additions.

Unit-5
Teaching Hours:14
C Programming
 

Data Types, Operators and Expressions  Input and output Operations  Control Flow – Branching, Control Flow – Looping  · Statements and Blocks  · If..Else, Switch, Nesting of If..Else  · GOTO statement  · The while statement  · The For statement  · The Do statement  · Jumps in loops

 

Arrays, Strings

 · One-dimensional arrays

 · Initialization of one-dimensional arrays

 · Two-dimensional Arrays

 · Initializing Two-dimensional arrays

 · Multi-dimensional arrays

 · Dynamic arrays

 · Declaring and Initializing string variables

 · Reading Strings from Terminal

 · Writing Strings to screen

 · String handling functions

 · Operations on strings

 

User-defined Functions, Structures

 · Basics of Functions

 · Functions Returning Non-integers

 · External Variables, Scope Rules

 · Header Files, Static Variables, Register Variables

 · Block Structure, Initialization, Recursion

 · Category of functions, Functions that return multiple values

 · Nesting functions, Multi-file programs

 · Structures and Functions, Arrays of Structures

 · Pointers to Structures, Self-referential structures

 

Unions, Pointers

 · Difference between Structures and Unions

 · Accessing the address of a variable

 · Declaring and Initializing pointer variables

 · Accessing a variable through its pointers

 · Chain of pointers

 · Pointer Expressions

 · Pointer Increments and Scale Factors

 · Pointers and character strings

 · Array of pointers

 · Pointers as function arguments

 · Functions returning pointers

 · Pointers to functions, Drawback of Pointers

 

File Management in C, The Preprocessor

 Defining and Opening a File, Closing a File, Input / Output Operations on Files, Random Access to Files, Command Line Arguments. Macro Substitution, File Inclusion, Compiler Control Directives, ANSI Additions.

Unit-5
Teaching Hours:14
C Programming
 

Data Types, Operators and Expressions  Input and output Operations  Control Flow – Branching, Control Flow – Looping  · Statements and Blocks  · If..Else, Switch, Nesting of If..Else  · GOTO statement  · The while statement  · The For statement  · The Do statement  · Jumps in loops

 

Arrays, Strings

 · One-dimensional arrays

 · Initialization of one-dimensional arrays

 · Two-dimensional Arrays

 · Initializing Two-dimensional arrays

 · Multi-dimensional arrays

 · Dynamic arrays

 · Declaring and Initializing string variables

 · Reading Strings from Terminal

 · Writing Strings to screen

 · String handling functions

 · Operations on strings

 

User-defined Functions, Structures

 · Basics of Functions

 · Functions Returning Non-integers

 · External Variables, Scope Rules

 · Header Files, Static Variables, Register Variables

 · Block Structure, Initialization, Recursion

 · Category of functions, Functions that return multiple values

 · Nesting functions, Multi-file programs

 · Structures and Functions, Arrays of Structures

 · Pointers to Structures, Self-referential structures

 

Unions, Pointers

 · Difference between Structures and Unions

 · Accessing the address of a variable

 · Declaring and Initializing pointer variables

 · Accessing a variable through its pointers

 · Chain of pointers

 · Pointer Expressions

 · Pointer Increments and Scale Factors

 · Pointers and character strings

 · Array of pointers

 · Pointers as function arguments

 · Functions returning pointers

 · Pointers to functions, Drawback of Pointers

 

File Management in C, The Preprocessor

 Defining and Opening a File, Closing a File, Input / Output Operations on Files, Random Access to Files, Command Line Arguments. Macro Substitution, File Inclusion, Compiler Control Directives, ANSI Additions.

Unit-5
Teaching Hours:14
C Programming
 

Data Types, Operators and Expressions  Input and output Operations  Control Flow – Branching, Control Flow – Looping  · Statements and Blocks  · If..Else, Switch, Nesting of If..Else  · GOTO statement  · The while statement  · The For statement  · The Do statement  · Jumps in loops

 

Arrays, Strings

 · One-dimensional arrays

 · Initialization of one-dimensional arrays

 · Two-dimensional Arrays

 · Initializing Two-dimensional arrays

 · Multi-dimensional arrays

 · Dynamic arrays

 · Declaring and Initializing string variables

 · Reading Strings from Terminal

 · Writing Strings to screen

 · String handling functions

 · Operations on strings

 

User-defined Functions, Structures

 · Basics of Functions

 · Functions Returning Non-integers

 · External Variables, Scope Rules

 · Header Files, Static Variables, Register Variables

 · Block Structure, Initialization, Recursion

 · Category of functions, Functions that return multiple values

 · Nesting functions, Multi-file programs

 · Structures and Functions, Arrays of Structures

 · Pointers to Structures, Self-referential structures

 

Unions, Pointers

 · Difference between Structures and Unions

 · Accessing the address of a variable

 · Declaring and Initializing pointer variables

 · Accessing a variable through its pointers

 · Chain of pointers

 · Pointer Expressions

 · Pointer Increments and Scale Factors

 · Pointers and character strings

 · Array of pointers

 · Pointers as function arguments

 · Functions returning pointers

 · Pointers to functions, Drawback of Pointers

 

File Management in C, The Preprocessor

 Defining and Opening a File, Closing a File, Input / Output Operations on Files, Random Access to Files, Command Line Arguments. Macro Substitution, File Inclusion, Compiler Control Directives, ANSI Additions.

Unit-5
Teaching Hours:14
C Programming
 

Data Types, Operators and Expressions  Input and output Operations  Control Flow – Branching, Control Flow – Looping  · Statements and Blocks  · If..Else, Switch, Nesting of If..Else  · GOTO statement  · The while statement  · The For statement  · The Do statement  · Jumps in loops

 

Arrays, Strings

 · One-dimensional arrays

 · Initialization of one-dimensional arrays

 · Two-dimensional Arrays

 · Initializing Two-dimensional arrays

 · Multi-dimensional arrays

 · Dynamic arrays

 · Declaring and Initializing string variables

 · Reading Strings from Terminal

 · Writing Strings to screen

 · String handling functions

 · Operations on strings

 

User-defined Functions, Structures

 · Basics of Functions

 · Functions Returning Non-integers

 · External Variables, Scope Rules

 · Header Files, Static Variables, Register Variables

 · Block Structure, Initialization, Recursion

 · Category of functions, Functions that return multiple values

 · Nesting functions, Multi-file programs

 · Structures and Functions, Arrays of Structures

 · Pointers to Structures, Self-referential structures

 

Unions, Pointers

 · Difference between Structures and Unions

 · Accessing the address of a variable

 · Declaring and Initializing pointer variables

 · Accessing a variable through its pointers

 · Chain of pointers

 · Pointer Expressions

 · Pointer Increments and Scale Factors

 · Pointers and character strings

 · Array of pointers

 · Pointers as function arguments

 · Functions returning pointers

 · Pointers to functions, Drawback of Pointers

 

File Management in C, The Preprocessor

 Defining and Opening a File, Closing a File, Input / Output Operations on Files, Random Access to Files, Command Line Arguments. Macro Substitution, File Inclusion, Compiler Control Directives, ANSI Additions.

Unit-5
Teaching Hours:14
C Programming
 

Data Types, Operators and Expressions  Input and output Operations  Control Flow – Branching, Control Flow – Looping  · Statements and Blocks  · If..Else, Switch, Nesting of If..Else  · GOTO statement  · The while statement  · The For statement  · The Do statement  · Jumps in loops

 

Arrays, Strings

 · One-dimensional arrays

 · Initialization of one-dimensional arrays

 · Two-dimensional Arrays

 · Initializing Two-dimensional arrays

 · Multi-dimensional arrays

 · Dynamic arrays

 · Declaring and Initializing string variables

 · Reading Strings from Terminal

 · Writing Strings to screen

 · String handling functions

 · Operations on strings

 

User-defined Functions, Structures

 · Basics of Functions

 · Functions Returning Non-integers

 · External Variables, Scope Rules

 · Header Files, Static Variables, Register Variables

 · Block Structure, Initialization, Recursion

 · Category of functions, Functions that return multiple values

 · Nesting functions, Multi-file programs

 · Structures and Functions, Arrays of Structures

 · Pointers to Structures, Self-referential structures

 

Unions, Pointers

 · Difference between Structures and Unions

 · Accessing the address of a variable

 · Declaring and Initializing pointer variables

 · Accessing a variable through its pointers

 · Chain of pointers

 · Pointer Expressions

 · Pointer Increments and Scale Factors

 · Pointers and character strings

 · Array of pointers

 · Pointers as function arguments

 · Functions returning pointers

 · Pointers to functions, Drawback of Pointers

 

File Management in C, The Preprocessor

 Defining and Opening a File, Closing a File, Input / Output Operations on Files, Random Access to Files, Command Line Arguments. Macro Substitution, File Inclusion, Compiler Control Directives, ANSI Additions.

Unit-5
Teaching Hours:14
C Programming
 

Data Types, Operators and Expressions  Input and output Operations  Control Flow – Branching, Control Flow – Looping  · Statements and Blocks  · If..Else, Switch, Nesting of If..Else  · GOTO statement  · The while statement  · The For statement  · The Do statement  · Jumps in loops

 

Arrays, Strings

 · One-dimensional arrays

 · Initialization of one-dimensional arrays

 · Two-dimensional Arrays

 · Initializing Two-dimensional arrays

 · Multi-dimensional arrays

 · Dynamic arrays

 · Declaring and Initializing string variables

 · Reading Strings from Terminal

 · Writing Strings to screen

 · String handling functions

 · Operations on strings

 

User-defined Functions, Structures

 · Basics of Functions

 · Functions Returning Non-integers

 · External Variables, Scope Rules

 · Header Files, Static Variables, Register Variables

 · Block Structure, Initialization, Recursion

 · Category of functions, Functions that return multiple values

 · Nesting functions, Multi-file programs

 · Structures and Functions, Arrays of Structures

 · Pointers to Structures, Self-referential structures

 

Unions, Pointers

 · Difference between Structures and Unions

 · Accessing the address of a variable

 · Declaring and Initializing pointer variables

 · Accessing a variable through its pointers

 · Chain of pointers

 · Pointer Expressions

 · Pointer Increments and Scale Factors

 · Pointers and character strings

 · Array of pointers

 · Pointers as function arguments

 · Functions returning pointers

 · Pointers to functions, Drawback of Pointers

 

File Management in C, The Preprocessor

 Defining and Opening a File, Closing a File, Input / Output Operations on Files, Random Access to Files, Command Line Arguments. Macro Substitution, File Inclusion, Compiler Control Directives, ANSI Additions.

Unit-5
Teaching Hours:14
C Programming
 

Data Types, Operators and Expressions  Input and output Operations  Control Flow – Branching, Control Flow – Looping  · Statements and Blocks  · If..Else, Switch, Nesting of If..Else  · GOTO statement  · The while statement  · The For statement  · The Do statement  · Jumps in loops

 

Arrays, Strings

 · One-dimensional arrays

 · Initialization of one-dimensional arrays

 · Two-dimensional Arrays

 · Initializing Two-dimensional arrays

 · Multi-dimensional arrays

 · Dynamic arrays

 · Declaring and Initializing string variables

 · Reading Strings from Terminal

 · Writing Strings to screen

 · String handling functions

 · Operations on strings

 

User-defined Functions, Structures

 · Basics of Functions

 · Functions Returning Non-integers

 · External Variables, Scope Rules

 · Header Files, Static Variables, Register Variables

 · Block Structure, Initialization, Recursion

 · Category of functions, Functions that return multiple values

 · Nesting functions, Multi-file programs

 · Structures and Functions, Arrays of Structures

 · Pointers to Structures, Self-referential structures

 

Unions, Pointers

 · Difference between Structures and Unions

 · Accessing the address of a variable

 · Declaring and Initializing pointer variables

 · Accessing a variable through its pointers

 · Chain of pointers

 · Pointer Expressions

 · Pointer Increments and Scale Factors

 · Pointers and character strings

 · Array of pointers

 · Pointers as function arguments

 · Functions returning pointers

 · Pointers to functions, Drawback of Pointers

 

File Management in C, The Preprocessor

 Defining and Opening a File, Closing a File, Input / Output Operations on Files, Random Access to Files, Command Line Arguments. Macro Substitution, File Inclusion, Compiler Control Directives, ANSI Additions.

Unit-5
Teaching Hours:14
C Programming
 

Data Types, Operators and Expressions  Input and output Operations  Control Flow – Branching, Control Flow – Looping  · Statements and Blocks  · If..Else, Switch, Nesting of If..Else  · GOTO statement  · The while statement  · The For statement  · The Do statement  · Jumps in loops

 

Arrays, Strings

 · One-dimensional arrays

 · Initialization of one-dimensional arrays

 · Two-dimensional Arrays

 · Initializing Two-dimensional arrays

 · Multi-dimensional arrays

 · Dynamic arrays

 · Declaring and Initializing string variables

 · Reading Strings from Terminal

 · Writing Strings to screen

 · String handling functions

 · Operations on strings

 

User-defined Functions, Structures

 · Basics of Functions

 · Functions Returning Non-integers

 · External Variables, Scope Rules

 · Header Files, Static Variables, Register Variables

 · Block Structure, Initialization, Recursion

 · Category of functions, Functions that return multiple values

 · Nesting functions, Multi-file programs

 · Structures and Functions, Arrays of Structures

 · Pointers to Structures, Self-referential structures

 

Unions, Pointers

 · Difference between Structures and Unions

 · Accessing the address of a variable

 · Declaring and Initializing pointer variables

 · Accessing a variable through its pointers

 · Chain of pointers

 · Pointer Expressions

 · Pointer Increments and Scale Factors

 · Pointers and character strings

 · Array of pointers

 · Pointers as function arguments

 · Functions returning pointers

 · Pointers to functions, Drawback of Pointers

 

File Management in C, The Preprocessor

 Defining and Opening a File, Closing a File, Input / Output Operations on Files, Random Access to Files, Command Line Arguments. Macro Substitution, File Inclusion, Compiler Control Directives, ANSI Additions.

Unit-5
Teaching Hours:14
C Programming
 

Data Types, Operators and Expressions  Input and output Operations  Control Flow – Branching, Control Flow – Looping  · Statements and Blocks  · If..Else, Switch, Nesting of If..Else  · GOTO statement  · The while statement  · The For statement  · The Do statement  · Jumps in loops

 

Arrays, Strings

 · One-dimensional arrays

 · Initialization of one-dimensional arrays

 · Two-dimensional Arrays

 · Initializing Two-dimensional arrays

 · Multi-dimensional arrays

 · Dynamic arrays

 · Declaring and Initializing string variables

 · Reading Strings from Terminal

 · Writing Strings to screen

 · String handling functions

 · Operations on strings

 

User-defined Functions, Structures

 · Basics of Functions

 · Functions Returning Non-integers

 · External Variables, Scope Rules

 · Header Files, Static Variables, Register Variables

 · Block Structure, Initialization, Recursion

 · Category of functions, Functions that return multiple values

 · Nesting functions, Multi-file programs

 · Structures and Functions, Arrays of Structures

 · Pointers to Structures, Self-referential structures

 

Unions, Pointers

 · Difference between Structures and Unions

 · Accessing the address of a variable

 · Declaring and Initializing pointer variables

 · Accessing a variable through its pointers

 · Chain of pointers

 · Pointer Expressions

 · Pointer Increments and Scale Factors

 · Pointers and character strings

 · Array of pointers

 · Pointers as function arguments

 · Functions returning pointers

 · Pointers to functions, Drawback of Pointers

 

File Management in C, The Preprocessor

 Defining and Opening a File, Closing a File, Input / Output Operations on Files, Random Access to Files, Command Line Arguments. Macro Substitution, File Inclusion, Compiler Control Directives, ANSI Additions.

Unit-5
Teaching Hours:14
C Programming
 

Data Types, Operators and Expressions  Input and output Operations  Control Flow – Branching, Control Flow – Looping  · Statements and Blocks  · If..Else, Switch, Nesting of If..Else  · GOTO statement  · The while statement  · The For statement  · The Do statement  · Jumps in loops

 

Arrays, Strings

 · One-dimensional arrays

 · Initialization of one-dimensional arrays

 · Two-dimensional Arrays

 · Initializing Two-dimensional arrays

 · Multi-dimensional arrays

 · Dynamic arrays

 · Declaring and Initializing string variables

 · Reading Strings from Terminal

 · Writing Strings to screen

 · String handling functions

 · Operations on strings

 

User-defined Functions, Structures

 · Basics of Functions

 · Functions Returning Non-integers

 · External Variables, Scope Rules

 · Header Files, Static Variables, Register Variables

 · Block Structure, Initialization, Recursion

 · Category of functions, Functions that return multiple values

 · Nesting functions, Multi-file programs

 · Structures and Functions, Arrays of Structures

 · Pointers to Structures, Self-referential structures

 

Unions, Pointers

 · Difference between Structures and Unions

 · Accessing the address of a variable

 · Declaring and Initializing pointer variables

 · Accessing a variable through its pointers

 · Chain of pointers

 · Pointer Expressions

 · Pointer Increments and Scale Factors

 · Pointers and character strings

 · Array of pointers

 · Pointers as function arguments

 · Functions returning pointers

 · Pointers to functions, Drawback of Pointers

 

File Management in C, The Preprocessor

 Defining and Opening a File, Closing a File, Input / Output Operations on Files, Random Access to Files, Command Line Arguments. Macro Substitution, File Inclusion, Compiler Control Directives, ANSI Additions.

Unit-5
Teaching Hours:14
C Programming
 

Data Types, Operators and Expressions  Input and output Operations  Control Flow – Branching, Control Flow – Looping  · Statements and Blocks  · If..Else, Switch, Nesting of If..Else  · GOTO statement  · The while statement  · The For statement  · The Do statement  · Jumps in loops

 

Arrays, Strings

 · One-dimensional arrays

 · Initialization of one-dimensional arrays

 · Two-dimensional Arrays

 · Initializing Two-dimensional arrays

 · Multi-dimensional arrays

 · Dynamic arrays

 · Declaring and Initializing string variables

 · Reading Strings from Terminal

 · Writing Strings to screen

 · String handling functions

 · Operations on strings

 

User-defined Functions, Structures

 · Basics of Functions

 · Functions Returning Non-integers

 · External Variables, Scope Rules

 · Header Files, Static Variables, Register Variables

 · Block Structure, Initialization, Recursion

 · Category of functions, Functions that return multiple values

 · Nesting functions, Multi-file programs

 · Structures and Functions, Arrays of Structures

 · Pointers to Structures, Self-referential structures

 

Unions, Pointers

 · Difference between Structures and Unions

 · Accessing the address of a variable

 · Declaring and Initializing pointer variables

 · Accessing a variable through its pointers

 · Chain of pointers

 · Pointer Expressions

 · Pointer Increments and Scale Factors

 · Pointers and character strings

 · Array of pointers

 · Pointers as function arguments

 · Functions returning pointers

 · Pointers to functions, Drawback of Pointers

 

File Management in C, The Preprocessor

 Defining and Opening a File, Closing a File, Input / Output Operations on Files, Random Access to Files, Command Line Arguments. Macro Substitution, File Inclusion, Compiler Control Directives, ANSI Additions.

Unit-5
Teaching Hours:14
C Programming
 

Data Types, Operators and Expressions  Input and output Operations  Control Flow – Branching, Control Flow – Looping  · Statements and Blocks  · If..Else, Switch, Nesting of If..Else  · GOTO statement  · The while statement  · The For statement  · The Do statement  · Jumps in loops

 

Arrays, Strings

 · One-dimensional arrays

 · Initialization of one-dimensional arrays

 · Two-dimensional Arrays

 · Initializing Two-dimensional arrays

 · Multi-dimensional arrays

 · Dynamic arrays

 · Declaring and Initializing string variables

 · Reading Strings from Terminal

 · Writing Strings to screen

 · String handling functions

 · Operations on strings

 

User-defined Functions, Structures

 · Basics of Functions

 · Functions Returning Non-integers

 · External Variables, Scope Rules

 · Header Files, Static Variables, Register Variables

 · Block Structure, Initialization, Recursion

 · Category of functions, Functions that return multiple values

 · Nesting functions, Multi-file programs

 · Structures and Functions, Arrays of Structures

 · Pointers to Structures, Self-referential structures

 

Unions, Pointers

 · Difference between Structures and Unions

 · Accessing the address of a variable

 · Declaring and Initializing pointer variables

 · Accessing a variable through its pointers

 · Chain of pointers

 · Pointer Expressions

 · Pointer Increments and Scale Factors

 · Pointers and character strings

 · Array of pointers

 · Pointers as function arguments

 · Functions returning pointers

 · Pointers to functions, Drawback of Pointers

 

File Management in C, The Preprocessor

 Defining and Opening a File, Closing a File, Input / Output Operations on Files, Random Access to Files, Command Line Arguments. Macro Substitution, File Inclusion, Compiler Control Directives, ANSI Additions.

Text Books And Reference Books:

1.Title: The ACE of Soft Skills: Attitude, Communication and Etiquette for Success

Author: Gopalaswamy Ramesh and Mahadevan Ramesh

Publisher: Pearson Education India

Edition: 1st Edition (2010).ISBN: 9788131732857.

2.Title: The ACE of Soft Skills: Attitude, Communication and Etiquette for Success

 

Author: Gopalaswamy Ramesh and Mahadevan Ramesh

 

Publisher: Pearson Education India

 

Edition: 1st Edition (2010)

ISBN: 9788131732857                                       

 

 

Essential Reading / Recommended Reading

1. Title: Quantitative Aptitude for Competitive Examinations

    Author: R.S. Aggarwal

    Publisher: S. Chand Publishing

    Edition: 2021

    ISBN: 9789352836509

 

2. Title: How to Prepare for Quantitative Aptitude for the CAT

    Author: Arun Sharma

    Publisher: McGraw Hill Education

    Edition: 10th Edition (2022)

    ISBN: 9789354720196

. Title: Quantitative Aptitude for Competitive Examinations

    Author: R.S. Aggarwal

    Publisher: S. Chand Publishing

    Edition: 2021

    ISBN: 9789352836509

 

3. Title: How to Prepare for Quantitative Aptitude for the CAT

    Author: Arun Sharma

    Publisher: McGraw Hill Education

    Edition: 10th Edition (2022)

    ISBN: 9789354720196.

Title: Let Us C

    Author: YashavantKanetkar

    Publisher: BPB Publications

    Edition: 17th Edition (2020)

    ISBN: 9789388511393

 

4. Title: Let Us C Solutions

    Author: YashavantKanetkar

    Publisher: BPB Publications

    Edition: 13th Edition (2021)

    ISBN: 9789387284588

 

5. Title: The C Programming Language

    Author: Brian W. Kernighan and Dennis M. Ritchie

    Publisher: Prentice Hall

    Edition: 2nd Edition (1988)

    ISBN: 9780131103627

Evaluation Pattern

Total Credit=1

Overall CIA=50.

CSE451 - EXTENDED REALITIES (2023 Batch)

Total Teaching Hours for Semester:60
No of Lecture Hours/Week:4
Max Marks:50
Credits:2

Course Objectives/Course Description

 

Course Description:

The course covers contents from basics of XR(AR-VR-MR), Unity Basic concepts, Introductory concepts of C# programming, functions of Augmented Reality.

 

Course objectives:

Students should be able to:

● Understand the core concepts and applications of Extended Reality (XR).

● Navigate and utilize the Unity platform proficiently for XR development.

● Develop XR experiences using C# scripting for interactive elements.

● Create Augmented Reality (AR) applications and Virtual/Mixed Reality (VR/MR) environments.

● Design and implement immersive user interfaces tailored for XR applications.

Learning Outcome

CO1: Explain core concepts and applications of Extended Reality (XR) through analysis and evaluation across various domains.

CO2: Develop using Unity platform proficiently for XR development, demonstrating synthesis and creation of immersive environments

CO3: Develop XR experiences using C# scripting, integrating critical thinking and problem-solving skills.

CO4: Build Augmented Reality (AR) applications and Virtual/Mixed Reality (VR/MR) environments, applying creative thinking and knowledge synthesis.

CO5: Develop immersive user interfaces tailored for XR applications, ensuring optimal user experience and engagement.

Unit-1
Teaching Hours:6
XR(AR,VR,MR) Essentials
 

  Introduction to immersive technologies and environments, XR hardwares, XR softwares, Design principles ,Computer graphics, UI and UX, Applications and benefits of immersive tech.

Unit-1
Teaching Hours:6
XR(AR,VR,MR) Essentials
 

  Introduction to immersive technologies and environments, XR hardwares, XR softwares, Design principles ,Computer graphics, UI and UX, Applications and benefits of immersive tech.

Unit-1
Teaching Hours:6
XR(AR,VR,MR) Essentials
 

  Introduction to immersive technologies and environments, XR hardwares, XR softwares, Design principles ,Computer graphics, UI and UX, Applications and benefits of immersive tech.

Unit-1
Teaching Hours:6
XR(AR,VR,MR) Essentials
 

  Introduction to immersive technologies and environments, XR hardwares, XR softwares, Design principles ,Computer graphics, UI and UX, Applications and benefits of immersive tech.

Unit-1
Teaching Hours:6
XR(AR,VR,MR) Essentials
 

  Introduction to immersive technologies and environments, XR hardwares, XR softwares, Design principles ,Computer graphics, UI and UX, Applications and benefits of immersive tech.

Unit-1
Teaching Hours:6
XR(AR,VR,MR) Essentials
 

  Introduction to immersive technologies and environments, XR hardwares, XR softwares, Design principles ,Computer graphics, UI and UX, Applications and benefits of immersive tech.

Unit-1
Teaching Hours:6
XR(AR,VR,MR) Essentials
 

  Introduction to immersive technologies and environments, XR hardwares, XR softwares, Design principles ,Computer graphics, UI and UX, Applications and benefits of immersive tech.

Unit-1
Teaching Hours:6
XR(AR,VR,MR) Essentials
 

  Introduction to immersive technologies and environments, XR hardwares, XR softwares, Design principles ,Computer graphics, UI and UX, Applications and benefits of immersive tech.

Unit-2
Teaching Hours:14
Unity Basics
 

Unity ID creation and login, Unity interface basics: Creating a scene in unity, importing 3d models: Lighting. 3D Animations in unity , Basic mechanisms(physics and non physics) , Audio and effects , User interface, Buttons.

Unit-2
Teaching Hours:14
Unity Basics
 

Unity ID creation and login, Unity interface basics: Creating a scene in unity, importing 3d models: Lighting. 3D Animations in unity , Basic mechanisms(physics and non physics) , Audio and effects , User interface, Buttons.

Unit-2
Teaching Hours:14
Unity Basics
 

Unity ID creation and login, Unity interface basics: Creating a scene in unity, importing 3d models: Lighting. 3D Animations in unity , Basic mechanisms(physics and non physics) , Audio and effects , User interface, Buttons.

Unit-2
Teaching Hours:14
Unity Basics
 

Unity ID creation and login, Unity interface basics: Creating a scene in unity, importing 3d models: Lighting. 3D Animations in unity , Basic mechanisms(physics and non physics) , Audio and effects , User interface, Buttons.

Unit-2
Teaching Hours:14
Unity Basics
 

Unity ID creation and login, Unity interface basics: Creating a scene in unity, importing 3d models: Lighting. 3D Animations in unity , Basic mechanisms(physics and non physics) , Audio and effects , User interface, Buttons.

Unit-2
Teaching Hours:14
Unity Basics
 

Unity ID creation and login, Unity interface basics: Creating a scene in unity, importing 3d models: Lighting. 3D Animations in unity , Basic mechanisms(physics and non physics) , Audio and effects , User interface, Buttons.

Unit-2
Teaching Hours:14
Unity Basics
 

Unity ID creation and login, Unity interface basics: Creating a scene in unity, importing 3d models: Lighting. 3D Animations in unity , Basic mechanisms(physics and non physics) , Audio and effects , User interface, Buttons.

Unit-2
Teaching Hours:14
Unity Basics
 

Unity ID creation and login, Unity interface basics: Creating a scene in unity, importing 3d models: Lighting. 3D Animations in unity , Basic mechanisms(physics and non physics) , Audio and effects , User interface, Buttons.

Unit-3
Teaching Hours:14
Scripting introduction using C#
 

Data types, variables and operators.Control structures: If statements and loops.  Classes, objects and methods, Using functions to add properties to objects in the scene,changing colors via scripts and UI,switching between scenes.

Unit-3
Teaching Hours:14
Scripting introduction using C#
 

Data types, variables and operators.Control structures: If statements and loops.  Classes, objects and methods, Using functions to add properties to objects in the scene,changing colors via scripts and UI,switching between scenes.

Unit-3
Teaching Hours:14
Scripting introduction using C#
 

Data types, variables and operators.Control structures: If statements and loops.  Classes, objects and methods, Using functions to add properties to objects in the scene,changing colors via scripts and UI,switching between scenes.

Unit-3
Teaching Hours:14
Scripting introduction using C#
 

Data types, variables and operators.Control structures: If statements and loops.  Classes, objects and methods, Using functions to add properties to objects in the scene,changing colors via scripts and UI,switching between scenes.

Unit-3
Teaching Hours:14
Scripting introduction using C#
 

Data types, variables and operators.Control structures: If statements and loops.  Classes, objects and methods, Using functions to add properties to objects in the scene,changing colors via scripts and UI,switching between scenes.

Unit-3
Teaching Hours:14
Scripting introduction using C#
 

Data types, variables and operators.Control structures: If statements and loops.  Classes, objects and methods, Using functions to add properties to objects in the scene,changing colors via scripts and UI,switching between scenes.

Unit-3
Teaching Hours:14
Scripting introduction using C#
 

Data types, variables and operators.Control structures: If statements and loops.  Classes, objects and methods, Using functions to add properties to objects in the scene,changing colors via scripts and UI,switching between scenes.

Unit-3
Teaching Hours:14
Scripting introduction using C#
 

Data types, variables and operators.Control structures: If statements and loops.  Classes, objects and methods, Using functions to add properties to objects in the scene,changing colors via scripts and UI,switching between scenes.

Unit-4
Teaching Hours:14
Augmented Reality
 

Introduction to AR basics, Plane tracking, AR Foundation, ARCore/ARKit, Building AR experiences.

Unit-4
Teaching Hours:14
Augmented Reality
 

Introduction to AR basics, Plane tracking, AR Foundation, ARCore/ARKit, Building AR experiences.

Unit-4
Teaching Hours:14
Augmented Reality
 

Introduction to AR basics, Plane tracking, AR Foundation, ARCore/ARKit, Building AR experiences.

Unit-4
Teaching Hours:14
Augmented Reality
 

Introduction to AR basics, Plane tracking, AR Foundation, ARCore/ARKit, Building AR experiences.

Unit-4
Teaching Hours:14
Augmented Reality
 

Introduction to AR basics, Plane tracking, AR Foundation, ARCore/ARKit, Building AR experiences.

Unit-4
Teaching Hours:14
Augmented Reality
 

Introduction to AR basics, Plane tracking, AR Foundation, ARCore/ARKit, Building AR experiences.

Unit-4
Teaching Hours:14
Augmented Reality
 

Introduction to AR basics, Plane tracking, AR Foundation, ARCore/ARKit, Building AR experiences.

Unit-4
Teaching Hours:14
Augmented Reality
 

Introduction to AR basics, Plane tracking, AR Foundation, ARCore/ARKit, Building AR experiences.

Unit-5
Teaching Hours:12
Development for Virtual Reality and Mixed Reality
 

Setup for VR/MR in unity. Creating and configuring scenes, Using “Building Blocks” from meta for setting up interaction. UI/UX in VR:MR. Using depth sensors and modal features for mixed reality.

Assignment : Create a Virtual reality experience for Quest 2/3 using at least one of the features from Meta Building blocks (XR interaction, scene API, depth API, pass through API, Spatial anchors)
Practical: Create an interactive digital twin of any physical system using at least one of the features from Meta building blocks (XR interaction sdk, poke interactors, gazeinteractors,…).

Unit-5
Teaching Hours:12
Development for Virtual Reality and Mixed Reality
 

Setup for VR/MR in unity. Creating and configuring scenes, Using “Building Blocks” from meta for setting up interaction. UI/UX in VR:MR. Using depth sensors and modal features for mixed reality.

Assignment : Create a Virtual reality experience for Quest 2/3 using at least one of the features from Meta Building blocks (XR interaction, scene API, depth API, pass through API, Spatial anchors)
Practical: Create an interactive digital twin of any physical system using at least one of the features from Meta building blocks (XR interaction sdk, poke interactors, gazeinteractors,…).

Unit-5
Teaching Hours:12
Development for Virtual Reality and Mixed Reality
 

Setup for VR/MR in unity. Creating and configuring scenes, Using “Building Blocks” from meta for setting up interaction. UI/UX in VR:MR. Using depth sensors and modal features for mixed reality.

Assignment : Create a Virtual reality experience for Quest 2/3 using at least one of the features from Meta Building blocks (XR interaction, scene API, depth API, pass through API, Spatial anchors)
Practical: Create an interactive digital twin of any physical system using at least one of the features from Meta building blocks (XR interaction sdk, poke interactors, gazeinteractors,…).

Unit-5
Teaching Hours:12
Development for Virtual Reality and Mixed Reality
 

Setup for VR/MR in unity. Creating and configuring scenes, Using “Building Blocks” from meta for setting up interaction. UI/UX in VR:MR. Using depth sensors and modal features for mixed reality.

Assignment : Create a Virtual reality experience for Quest 2/3 using at least one of the features from Meta Building blocks (XR interaction, scene API, depth API, pass through API, Spatial anchors)
Practical: Create an interactive digital twin of any physical system using at least one of the features from Meta building blocks (XR interaction sdk, poke interactors, gazeinteractors,…).

Unit-5
Teaching Hours:12
Development for Virtual Reality and Mixed Reality
 

Setup for VR/MR in unity. Creating and configuring scenes, Using “Building Blocks” from meta for setting up interaction. UI/UX in VR:MR. Using depth sensors and modal features for mixed reality.

Assignment : Create a Virtual reality experience for Quest 2/3 using at least one of the features from Meta Building blocks (XR interaction, scene API, depth API, pass through API, Spatial anchors)
Practical: Create an interactive digital twin of any physical system using at least one of the features from Meta building blocks (XR interaction sdk, poke interactors, gazeinteractors,…).

Unit-5
Teaching Hours:12
Development for Virtual Reality and Mixed Reality
 

Setup for VR/MR in unity. Creating and configuring scenes, Using “Building Blocks” from meta for setting up interaction. UI/UX in VR:MR. Using depth sensors and modal features for mixed reality.

Assignment : Create a Virtual reality experience for Quest 2/3 using at least one of the features from Meta Building blocks (XR interaction, scene API, depth API, pass through API, Spatial anchors)
Practical: Create an interactive digital twin of any physical system using at least one of the features from Meta building blocks (XR interaction sdk, poke interactors, gazeinteractors,…).

Unit-5
Teaching Hours:12
Development for Virtual Reality and Mixed Reality
 

Setup for VR/MR in unity. Creating and configuring scenes, Using “Building Blocks” from meta for setting up interaction. UI/UX in VR:MR. Using depth sensors and modal features for mixed reality.

Assignment : Create a Virtual reality experience for Quest 2/3 using at least one of the features from Meta Building blocks (XR interaction, scene API, depth API, pass through API, Spatial anchors)
Practical: Create an interactive digital twin of any physical system using at least one of the features from Meta building blocks (XR interaction sdk, poke interactors, gazeinteractors,…).

Unit-5
Teaching Hours:12
Development for Virtual Reality and Mixed Reality
 

Setup for VR/MR in unity. Creating and configuring scenes, Using “Building Blocks” from meta for setting up interaction. UI/UX in VR:MR. Using depth sensors and modal features for mixed reality.

Assignment : Create a Virtual reality experience for Quest 2/3 using at least one of the features from Meta Building blocks (XR interaction, scene API, depth API, pass through API, Spatial anchors)
Practical: Create an interactive digital twin of any physical system using at least one of the features from Meta building blocks (XR interaction sdk, poke interactors, gazeinteractors,…).

Text Books And Reference Books:

Steven M Lavelle: Virtual reality, Cambridge University Press, 2023

Evaluation Pattern

CIA: 50 marks

ESE: 50 marks

(Scale down to 50 marks - Department level)

ECHO441CS - INTRODUCTION TO BLOCKCHAIN (2023 Batch)

Total Teaching Hours for Semester:45
No of Lecture Hours/Week:3
Max Marks:100
Credits:3

Course Objectives/Course Description

 

At the end of the course, the students should be able to:

·       Understanding the concepts and the various terminologies in blockchain.

·       Familiarizing the various types of algorithms used in distributed computing.

·       Understanding the workings of blockchain and the mining process.

·       Analyzing the various applications of blockchain technologies.

·       Analyzing the security and privacy issues in the blockchain.

Learning Outcome

CO1: Explain the concepts of Distributed systems, and the fundamentals and types of blockchain

CO2: Illustrate the various techniques in distributed computing in connection with the crypto primitives

CO3: Infer the operation of blockchain, the various architectures and structures used in it and essential components in Blockchain 1.0.

CO4: Illustrate the various applications of blockchain technologies and components of Blockchain 2.0

CO5: Analyze the security issues in blockchain technology

Unit-1
Teaching Hours:9
Unit-1: Introduction
 

Distributed DBMS – Limitations of Distributed DBMS, Introduction to Block chain – History, Definition, Distributed Ledger, Blockchain Categories – Public, Private, Consortium, Blockchain Network and Nodes, Peer-to-Peer Network, Mining Mechanism, Generic elements of Blockchain, Features of Blockchain, and Types of Blockchain. 

Unit-1
Teaching Hours:9
Unit-1: Introduction
 

Distributed DBMS – Limitations of Distributed DBMS, Introduction to Block chain – History, Definition, Distributed Ledger, Blockchain Categories – Public, Private, Consortium, Blockchain Network and Nodes, Peer-to-Peer Network, Mining Mechanism, Generic elements of Blockchain, Features of Blockchain, and Types of Blockchain. 

Unit-1
Teaching Hours:9
Unit-1: Introduction
 

Distributed DBMS – Limitations of Distributed DBMS, Introduction to Block chain – History, Definition, Distributed Ledger, Blockchain Categories – Public, Private, Consortium, Blockchain Network and Nodes, Peer-to-Peer Network, Mining Mechanism, Generic elements of Blockchain, Features of Blockchain, and Types of Blockchain. 

Unit-2
Teaching Hours:9
Unit-2: Basic Distributed Computing & Crypto primitives
 

Atomic Broadcast, Consensus, Byzantine Models of fault tolerance

Hash functions, Puzzle friendly Hash, Collison resistant hash, digital signatures, public key crypto, verifiable random functions, Zero-knowledge systems

Unit-2
Teaching Hours:9
Unit-2: Basic Distributed Computing & Crypto primitives
 

Atomic Broadcast, Consensus, Byzantine Models of fault tolerance

Hash functions, Puzzle friendly Hash, Collison resistant hash, digital signatures, public key crypto, verifiable random functions, Zero-knowledge systems

Unit-2
Teaching Hours:9
Unit-2: Basic Distributed Computing & Crypto primitives
 

Atomic Broadcast, Consensus, Byzantine Models of fault tolerance

Hash functions, Puzzle friendly Hash, Collison resistant hash, digital signatures, public key crypto, verifiable random functions, Zero-knowledge systems

Unit-3
Teaching Hours:9
Unit-3: Blockchain 1.0
 

Operation of Bitcoin Blockchain, Blockchain Architecture – Block, Hash, Distributer P2P, Structure of Blockchain- Consensus mechanism: Proof of Work (PoW), Proof of Stake (PoS), Byzantine Fault Tolerance (BFT), Proof of Authority (PoA) and Proof of Elapsed Time (PoET)

Unit-3
Teaching Hours:9
Unit-3: Blockchain 1.0
 

Operation of Bitcoin Blockchain, Blockchain Architecture – Block, Hash, Distributer P2P, Structure of Blockchain- Consensus mechanism: Proof of Work (PoW), Proof of Stake (PoS), Byzantine Fault Tolerance (BFT), Proof of Authority (PoA) and Proof of Elapsed Time (PoET)

Unit-3
Teaching Hours:9
Unit-3: Blockchain 1.0
 

Operation of Bitcoin Blockchain, Blockchain Architecture – Block, Hash, Distributer P2P, Structure of Blockchain- Consensus mechanism: Proof of Work (PoW), Proof of Stake (PoS), Byzantine Fault Tolerance (BFT), Proof of Authority (PoA) and Proof of Elapsed Time (PoET)

Unit-4
Teaching Hours:9
Unit-4: Blockchain 2.0
 

Ethereum and Smart Contracts, The Turing Completeness of Smart Contract Languages and verification challenges, Using smart contracts to enforce legal contracts, comparing Bitcoin scripting vs. Ethereum Smart Contracts

Unit-4
Teaching Hours:9
Unit-4: Blockchain 2.0
 

Ethereum and Smart Contracts, The Turing Completeness of Smart Contract Languages and verification challenges, Using smart contracts to enforce legal contracts, comparing Bitcoin scripting vs. Ethereum Smart Contracts

Unit-4
Teaching Hours:9
Unit-4: Blockchain 2.0
 

Ethereum and Smart Contracts, The Turing Completeness of Smart Contract Languages and verification challenges, Using smart contracts to enforce legal contracts, comparing Bitcoin scripting vs. Ethereum Smart Contracts

Unit-5
Teaching Hours:9
Unit-5: Privacy, Security issues in Blockchain
 

Pseudo-anonymity vs. anonymity, Zcash and Zk-SNARKS for anonymity preservation, attacks on Blockchains – such as Sybil attacks, selfish mining, 51% attacks - -advent of algorand, and Sharding based consensus algorithms to prevent these 

Unit-5
Teaching Hours:9
Unit-5: Privacy, Security issues in Blockchain
 

Pseudo-anonymity vs. anonymity, Zcash and Zk-SNARKS for anonymity preservation, attacks on Blockchains – such as Sybil attacks, selfish mining, 51% attacks - -advent of algorand, and Sharding based consensus algorithms to prevent these 

Unit-5
Teaching Hours:9
Unit-5: Privacy, Security issues in Blockchain
 

Pseudo-anonymity vs. anonymity, Zcash and Zk-SNARKS for anonymity preservation, attacks on Blockchains – such as Sybil attacks, selfish mining, 51% attacks - -advent of algorand, and Sharding based consensus algorithms to prevent these 

Text Books And Reference Books:

1.Imran Bashir, “Mastering Blockchain: Distributed Ledger Technology, decentralization, and smart contracts explained”, 2nd Edition, Packt Publishing Ltd, March 2018.

2.Bellaj Badr, Richard Horrocks, Xun (Brian) Wu, “Blockchain By Example: A developer's guide to creating decentralized applications using Bitcoin, Ethereum, and Hyperledger”, Packt Publishing Limited, 2018.

Essential Reading / Recommended Reading

1.Andreas M. Antonopoulos , “Mastering Bitcoin: Unlocking Digital Cryptocurrencies”, O’Reilly Media Inc, 2015

2.Arvind Narayanan, Joseph Bonneau, Edward Felten, Andrew Miller and Steven Goldfeder, “Bitcoin and Cryptocurrency Technologies: A Comprehensive Introduction”, Princeton University Press, 2016.

Evaluation Pattern

 

CIA I-20 MARKS

CIA II-50 MARKS

CIA III-20 MARKS

ATTENDANCE-5 MARKS

PRACTICAL -50 MARKS

END SEMESTER EXAMINATION -100 MARKS

SCALED[ CIA  -50 MARKS & ESE -50 MARKS]

ELC432P - DATABASE MANAGEMENT SYSTEMS (2023 Batch)

Total Teaching Hours for Semester:75
No of Lecture Hours/Week:5
Max Marks:100
Credits:4

Course Objectives/Course Description

 

The objective of this course is to impart the fundamentals of data models and to represent a database system using ER diagrams, to study SQL and relational database design, to understand the internal storage structures using different file and indexing techniques which will help in physical DB design, to understand the fundamental concepts of transaction processing- concurrency control techniques and recovery procedures and to have an introductory knowledge about the Storage and Query processing Techniques

Learning Outcome

CO1: Classify the modern and futuristic database applications based on size and complexity

CO2: Develop ER model to Relational model to perform database design effectively

CO3: Examine queries using normalization criteria and optimize queries

CO4: Compare and contrast various indexing strategies in different database systems

CO5: Examine how advanced databases differ from traditional databases.

Unit-1
Teaching Hours:9
RELATIONAL DATABASES
 

Purpose of Database System — Views of data — Data Models — Database System Architecture — Introduction to relational databases — Relational Model — Keys — Relational Algebra — SQL fundamentals — Advanced SQL features — Embedded SQL– Dynamic SQL

Unit-2
Teaching Hours:9
DATABASE DESIGN
 

Entity-Relationship model — E-R Diagrams — Enhanced-ER Model — ER-to-Relational Mapping — Functional Dependencies — Non-loss Decomposition — First, Second, Third Normal Forms, Dependency Preservation — Boyce/Codd Normal Form — Multi-valued Dependencies and Fourth Normal Form — Join Dependencies and Fifth Normal Form

Unit-3
Teaching Hours:9
TRANSACTIONS
 

Transaction Concepts — ACID Properties — Schedules — Serializability — Concurrency Control — Need for Concurrency — Locking Protocols — Two Phase Locking — Deadlock — Transaction Recovery — Save Points — Isolation Levels — SQL Facilities for Concurrency and Recovery.

Unit-4
Teaching Hours:9
IMPLEMENTATION TECHNIQUES
 

RAID — File Organization — Organization of Records in Files — Indexing and Hashing –Ordered Indices — B+ tree Index Files — B tree Index Files — Static Hashing — Dynamic Hashing — Query Processing Overview — Algorithms for SELECT and JOIN operations — Query optimization using Heuristics and Cost Estimation.

Unit-5
Teaching Hours:9
ADVANCED TOPICS
 

Distributed Databases: Architecture, Data Storage, Transaction Processing — Object-based Databases: Object Database Concepts, Object-Relational features, ODMG Object Model, ODL, OQL — XML Databases: XML Hierarchical Model, DTD, XML Schema, XQuery — Information Retrieval: IR Concepts, Retrieval Models, Queries in IR systems.

Text Books And Reference Books:

T1. Abraham Silberschatz, Henry F. Korth, S. Sudharshan, “Database System Concepts”, Sixth Edition, Tata McGraw Hill, 2014.

 

T2. Ramez Elmasri, Shamkant B. Navathe, “Fundamentals of Database Systems”, Seventh Edition, Pearson Education, 2017.

Essential Reading / Recommended Reading

R1.C. J. Date, A. Kannan, S. Swamynathan, “An Introduction to Database Systems”, Eighth Edition, Pearson Education, 2006.

R2.Raghu Ramakrishnan, Johannes Gehrke, “Database Management Systems”, Fourth Edition, Tata McGraw Hill, 2010.

G. K. Gupta, “Database Management Systems”, Tata McGraw Hill, 2011.

R3.Carlos Coronel, Steven Morris, Peter Rob, “Database Systems: Design, Implementation and Management”, Ninth Edition, Cengage Learning, 2011.

Evaluation Pattern

CIA - 70 marks

ESE - 30 marks

ELC433 - SIGNALS AND SYSTEMS (2023 Batch)

Total Teaching Hours for Semester:45
No of Lecture Hours/Week:3
Max Marks:100
Credits:3

Course Objectives/Course Description

 
  • Demonstrate a knowledge and understanding of the fundamental concepts and principles of signals and systems.

  • Demonstrate spectral analysis of CT periodic and aperiodic signals using CT Fourier and Laplace methods. 

  • Analyse and characterization of total response, impulse response and frequency response of LTI CT systems.

  • Interpret discrete time signal by Discrete Time Fourier transforms and Z transform. 

  • Analyse and Characterization of total response, impulse response and frequency response of LTI DT systems.

Learning Outcome

CO1: Categorize the properties and representation of discrete and continuous time signals and systems

CO2: Analyze the continuous time signal using Fourier and Laplace transform

CO3: Examine total response, impulse response and frequency response of LTI-CT system

CO4: Analyze the discrete time signals using Discrete Time Fourier Transforms and Z transform

CO5: Examine total response, impulse response and frequency response of LTI-DT systems.

Unit-1
Teaching Hours:9
CLASSIFICATION OF SIGNALS AND SYSTEMS
 

Continuous Time signals (CT signals), Discrete Time signals (DT signals) - Step, Ramp, Impulse, Exponential, Classification of CT and DT signals - periodic and aperiodic, Energy and power, even and odd, Deterministic and Random signals, Transformation on Independent variables -CT systems and DT systems, Properties of Systems – Linearity, Causality, Time Invariance, Stability, Invertibility and LTI Systems.

Unit-2
Teaching Hours:9
ANALYSIS OF CONTINUOUS TIME SIGNALS
 

Fourier Series Analysis, Spectrum of CT Signals, Continuous Time Fourier Transform and Laplace Transform in Signal Analysis, Properties of Fourier Transform, Laplace Transform-Properties-ROC, Parseval’s Theorem, Sampling Theorem and Aliasing.

Unit-3
Teaching Hours:9
LINEAR TIME INVARIANT ?CONTINUOUS TIME SYSTEMS
 

Differential Equation- Block diagram representation-impulse response, convolution integrals-Fourier and Laplace transforms in Analysis.

Unit-4
Teaching Hours:9
ANALYSIS OF DISCRETE TIME SIGNALS
 

Spectrum of DT Signals, Discrete Time Fourier Transform (DTFT), Z-Transform in signal analysis, Z-transform-Properties-ROC and Inverse Z Transform-Partial Fraction-Long Division.

Unit-5
Teaching Hours:9
LINEAR TIME INVARIANT ?DISCRETE TIME SYSTEMS
 

Difference Equations- Block diagram representation-Impulse response-Convolution sum-DTFT and Z Transform analysis of Recursive & Non-Recursive systems.

Text Books And Reference Books:

T1 Alan V. Oppenheim, Alan S. Willsky with S. Hamid Nawab, Signals & Systems, 2ndedn., Pearson Education, 2015

 

T2. M. J. Roberts, Signals and Systems Analysis using Transform method and MATLAB, TMH 2003.

Essential Reading / Recommended Reading

R1. Lathi B. P, Signals Systems and Communication, B S Publications, Hyderabad, 2011.

R2. Simon Haykin and Barry Van Veen, Signals and Systems, John Wiley, 2009

R3. K. Lindner, “Signals and Systems”, McGraw Hill International, 2009

R4. Michael J Roberts, "Fundamentals of Signals and systems" Tata McGraw Hill, 2007.

Evaluation Pattern
CIA-50 marks
ESE-50 marks

ELC434 - COMPUTER ORGANIZATION AND ARCHITECTURE (2023 Batch)

Total Teaching Hours for Semester:45
No of Lecture Hours/Week:3
Max Marks:100
Credits:3

Course Objectives/Course Description

 

The objective of this subject is to make students understand the basic structure and operation of digital computer, to familiarize with implementation of fixed point and floating-point arithmetic operations, to study the design of data path unit and control unit for processor, to understand the concept of various memories and interfacing and to introduce the parallel processing technique.

Learning Outcome

CO1: Describe data representation, instruction formats and the operation of a digital computer

CO2: Illustrate the fixed point and floating-point arithmetic for ALU operation

CO3: Discuss about implementation schemes of control unit and pipeline performance

CO4: Explain the concept of various memories, interfacing and organization of multiple processors

CO5: Discuss parallel processing technique and unconventional architectures

Unit-1
Teaching Hours:9
COMPUTER ORGANIZATION & INSTRUCTIONS
 

Basics of a computer system: Evolution, Ideas, Technology, Performance, Power wall, Uniprocessors to Multiprocessors. Addressing and addressing modes. Instructions: Operations and Operands, Representing instructions, Logical operations, control operations.

Unit-2
Teaching Hours:9
ARITHMETIC
 

Fixed point Addition, Subtraction, Multiplication and Division. Floating Point arithmetic, High performance arithmetic, Subword parallelism

Unit-3
Teaching Hours:9
THE PROCESSOR
 

Introduction, Logic Design Conventions, Building a Datapath — A Simple Implementation scheme — An Overview of Pipelining — Pipelined Datapath and Control. Data Hazards: Forwarding versus Stalling, Control Hazards, Exceptions, Parallelism via Instructions.

Unit-4
Teaching Hours:9
MEMORY AND I/O ORGANIZATION
 

Memory hierarchy, Memory Chip Organization, Cache memory, Virtual memory. Parallel Bus Architectures, Internal Communication Methodologies, Serial Bus Architectures, Mass storage, Input and Output Devices.

Unit-5
Teaching Hours:9
ADVANCED COMPUTER ARCHITECTURE
 

Parallel processing architectures and challenges, Hardware multithreading, Multicore and shared memory multiprocessors, Introduction to Graphics Processing Units, Clusters and Warehouse scale computers — Introduction to Multiprocessor network topologies.

Text Books And Reference Books:

T1. David A. Patterson and John L. Hennessey, ―Computer Organization and Design, Fifth edition, Morgan Kauffman / Elsevier, 2014. 

T2. Miles J. Murdocca and Vincent P. Heuring, ―Computer Architecture and Organization: An Integrated approach, Second edition, Wiley India Pvt Ltd, 2015

Essential Reading / Recommended Reading

R1. V. Carl Hamacher, Zvonko G. Varanesic and Safat G. Zaky, ―Computer Organization―, Fifth edition, Mc Graw-Hill Education India Pvt Ltd, 2014.

R2. William Stallings ―Computer Organization and Architecture, Seventh Edition, Pearson Education, 2006.

R3. Govindarajalu, ―Computer Architecture and Organization, Design Principles and Applications", Second edition, McGraw-Hill Education India Pvt Ltd, 2014.

Evaluation Pattern
CIA-50 marks
ESE-50 marks

ELC435P - OBJECT ORIENTED PROGRAMMING WITH JAVA (2023 Batch)

Total Teaching Hours for Semester:75
No of Lecture Hours/Week:5
Max Marks:100
Credits:4

Course Objectives/Course Description

 

The objective of the course is to provide the students to familiarize with Object Oriented Programming concepts and basic characteristics of Java.

Learning Outcome

CO1: Develop Java programs using OOP principles

CO2: Develop Java programs with the concepts inheritance and interfaces

CO3: Build Java applications using exceptions and I/O streams

CO4: Develop Java applications with threads and generics classes

CO5: Develop interactive Java programs using swings

Unit-1
Teaching Hours:9
INTRODUCTION TO OOP AND JAVA FUNDAMENTALS
 

Object Oriented Programming – Abstraction – objects and classes – Encapsulation- Inheritance – Polymorphism- OOP in Java – Characteristics of Java – The Java Environment – Java Source File -Structure – Compilation. Fundamental Programming Structures in Java – Defining classes in Java – constructors, methods -aces specifiers – static members -Comments, Data Types, Variables, Operators, Control Flow, Arrays ,Packages – JavaDoc comments.

Unit-2
Teaching Hours:9
INHERITANCE AND INTERFACES
 

Inheritance – Super classes- sub classes –Protected members – constructors in sub classes- the Object class – abstract classes and methods- final methods and classes – Interfaces – defining an interface, implementing interface, differences between classes and interfaces and extending interfaces – Object cloning -inner classes, Array Lists – Strings

Unit-3
Teaching Hours:9
EXCEPTION HANDLING AND I/O
 

Exceptions – exception hierarchy – throwing and catching exceptions – built-in exceptions, creating own exceptions, Stack Trace Elements. Input / Output Basics – Streams – Byte streams and Character streams – Reading and Writing Console – Reading and Writing Files

Unit-4
Teaching Hours:9
MULTITHREADING AND GENERIC PROGRAMMING
 

Differences between multi-threading and multitasking, thread life cycle, creating threads, synchronizing threads, Inter-thread communication, daemon threads, thread groups. Generic Programming – Generic classes – generic methods – Bounded Types – Restrictions and Limitations.

Unit-5
Teaching Hours:9
EVENT DRIVEN PROGRAMMING
 

Graphics programming – Frame – Components – working with 2D shapes – Using color, fonts, and

images – Basics of event handling – event handlers – adapter classes – actions – mouse events – AWT event hierarchy – Introduction to Swing – layout management – Swing Components – Text Fields , Text Areas – Buttons-Check Boxes – Radio Buttons – Lists- choices- Scrollbars – Windows –Menus – Dialog Boxes

Text Books And Reference Books:

T1. Herbert Schildt, “Java The complete reference”, 8th Edition, McGraw Hill Education, 2011.

 

T2. Cay S. Horstmann, Gary cornell, “Core Java Volume –I Fundamentals”, 9th Edition, Prentice Hall, 2013.

Essential Reading / Recommended Reading

R1.Paul Deitel, Harvey Deitel, “Java SE 8 for programmers”, 3rd Edition, Pearson, 2015.

R2. Steven Holzner, “Java 2 Black book”, Dreamtech press, 2011.

R3. Timothy Budd, “Understanding Object-oriented programming with Java”, Updated Edition, Pearson Education, 2000.

Evaluation Pattern

CIA-70marks

ESE-30marks

EVS421 - ENVIRONMENTAL SCIENCE (2023 Batch)

Total Teaching Hours for Semester:30
No of Lecture Hours/Week:2
Max Marks:0
Credits:0

Course Objectives/Course Description

 

To understand the scope and importance of environmental science towards developing a conscious community for environmental issues, both at global and local scale.  

Learning Outcome

CO1: Explain the components and concept of various ecosystems in the environment

CO2: Explain the necessity of natural resources management

CO3: Relate the causes and impacts of environmental pollution

CO4: Relate climate change/global atmospheric changes and adaptation

CO5: Appraise the role of technology and institutional mechanisms for environmental protection

Unit-1
Teaching Hours:6
Introduction
 

Environment and Eco systems – Definition, Scope and importance. Components of environment. Concept and Structure of eco systems. Material Cycles – Nitrogen, Carbon, Sulphur, Phosphorous, Oxygen. Energy Flow and classification of Eco systems.   

Unit-1
Teaching Hours:6
Introduction
 

Environment and Eco systems – Definition, Scope and importance. Components of environment. Concept and Structure of eco systems. Material Cycles – Nitrogen, Carbon, Sulphur, Phosphorous, Oxygen. Energy Flow and classification of Eco systems.   

Unit-2
Teaching Hours:6
Natural Resources
 

Classification and importance- Forest, Water, Mineral, Food, Energy. Management of natural resources – challenges and methods. Sustainable development – Goals, Agriculture, Industries

Unit-2
Teaching Hours:6
Natural Resources
 

Classification and importance- Forest, Water, Mineral, Food, Energy. Management of natural resources – challenges and methods. Sustainable development – Goals, Agriculture, Industries

Unit-3
Teaching Hours:6
Environmental Pollution
 

Causes and Impacts – Air pollution, Water pollution, Soil Pollution, Noise Pollution, Marine Pollution, Municipal Solid Wastes, Bio Medical and E-Waste. Solid Waste Management

Unit-3
Teaching Hours:6
Environmental Pollution
 

Causes and Impacts – Air pollution, Water pollution, Soil Pollution, Noise Pollution, Marine Pollution, Municipal Solid Wastes, Bio Medical and E-Waste. Solid Waste Management

Unit-4
Teaching Hours:6
Climate change/Global Atmospheric Change
 

Global Temperature, Greenhouse effect, global energy balance, Global warming potential, International Panel for Climate Change (IPCC) Emission scenarios, Oceans and climate change. Adaptation methods. Green Climate fund. Climate change related planning- small islands and coastal region. Impact on women, children, youths and marginalized communities

Unit-4
Teaching Hours:6
Climate change/Global Atmospheric Change
 

Global Temperature, Greenhouse effect, global energy balance, Global warming potential, International Panel for Climate Change (IPCC) Emission scenarios, Oceans and climate change. Adaptation methods. Green Climate fund. Climate change related planning- small islands and coastal region. Impact on women, children, youths and marginalized communities

Unit-5
Teaching Hours:6
Environmental Protection
 

Technology, Modern Tools – GIS and  Remote Sensing,. Institutional Mechanisms - Environmental Acts and Regulations, Role of government, Legal aspects. Role of Nongovernmental Organizations (NGOs) , Environmental Education and Entrepreneurship

Unit-5
Teaching Hours:6
Environmental Protection
 

Technology, Modern Tools – GIS and  Remote Sensing,. Institutional Mechanisms - Environmental Acts and Regulations, Role of government, Legal aspects. Role of Nongovernmental Organizations (NGOs) , Environmental Education and Entrepreneurship

Text Books And Reference Books:

T1Kaushik A and Kaushik. C. P, “Perspectives in Environmental Studies”New Age International Publishers, New Delhi, 2018 [Unit: I, II, III and IV]

T2Asthana and Asthana, “A text Book of Environmental Studies”, S. Chand, New Delhi, Revised Edition, 2010 [Unit: I, II, III and V]

T3Nandini. N, Sunitha. N and Tandon. S, “environmental Studies” , Sapana, Bangalore,  June 2019 [Unit: I, II, III and IV]

T4R Rajagopalan, “Environmental Studies – From Crisis to Cure”, Oxford, Seventh University Press, 2017, [Unit: I, II, III and IV]

 

Essential Reading / Recommended Reading

R1.Miller. G. T and Spoolman. S. E, “Environmental Science”, CENAGE  Learning, New Delhi, 2015

R2.Masters, G andEla, W.P (2015), Introduction to environmental Engineering and Science, 3rd Edition. Pearson., New Delhi, 2013.

R3.Raman Sivakumar, “Principals of Environmental Science and Engineering”, Second Edition, Cengage learning Singapore, 2005.

R4.P. Meenakshi, “Elements of Environmental Science and Engineering”, Prentice Hall of India Private Limited, New Delhi, 2006.

R5.S.M. Prakash, “Environmental Studies”, Elite Publishers Mangalore, 2007

R6.ErachBharucha, “Textbook of Environmental Studies”, for UGC, University press, 2005.

R7. Dr. Pratiba Sing, Dr. AnoopSingh and Dr. PiyushMalaviya, “Textbook of Environmental and Ecology”, Acme Learning Pvt. Ltd. New Delhi.

Evaluation Pattern

No Evaluation

HS425 - PROFESSIONAL ETHICS (2023 Batch)

Total Teaching Hours for Semester:30
No of Lecture Hours/Week:2
Max Marks:50
Credits:2

Course Objectives/Course Description

 

(a) To understand the moral values that ought to guide the Engineering profession.

(b) To resolve the moral issues in the profession.

 

Learning Outcome

CO1: Outline professional ethics and human values by realizing the holistic attributes.

CO2: Specify the Engineering Professional Ethics to identify problems related to society, safety, health & legal aspects.

CO3: Explain the importance of being ethical while using technology in the digital space.

CO4: Understand the various Business functions and the ethical principles that govern the global business

CO5: Explain the Importance of ethical conduct to safeguard environment and its resources.

Unit-1
Teaching Hours:6
INTRODUCTION TO ETHICS
 

Introduction to Profession, Engineering and Professionalism, Three types of Ethics / Morality , Positive and Negative faces of Engineering Ethics

Unit-1
Teaching Hours:6
INTRODUCTION TO ETHICS
 

Introduction to Profession, Engineering and Professionalism, Three types of Ethics / Morality , Positive and Negative faces of Engineering Ethics

Unit-1
Teaching Hours:6
INTRODUCTION TO ETHICS
 

Introduction to Profession, Engineering and Professionalism, Three types of Ethics / Morality , Positive and Negative faces of Engineering Ethics

Unit-2
Teaching Hours:6
RESPONSIBILITY IN ENGINEERING AND ENGINEERING ETHICS
 

Introduction, Engineering Standards, Blame – Responsibility and Causation, Liability, Design Standards.

Senses of 'Engineering Ethics' - variety of moral issued - types of inquiry - moral dilemmas - moral autonomy - Kohlberg's theory - Gilligan's theory - consensus and controversy – Models of Professional Roles - theories about right action - Self-interest - customs and religion - uses of ethical theories.

 

Unit-2
Teaching Hours:6
RESPONSIBILITY IN ENGINEERING AND ENGINEERING ETHICS
 

Introduction, Engineering Standards, Blame – Responsibility and Causation, Liability, Design Standards.

Senses of 'Engineering Ethics' - variety of moral issued - types of inquiry - moral dilemmas - moral autonomy - Kohlberg's theory - Gilligan's theory - consensus and controversy – Models of Professional Roles - theories about right action - Self-interest - customs and religion - uses of ethical theories.

 

Unit-2
Teaching Hours:6
RESPONSIBILITY IN ENGINEERING AND ENGINEERING ETHICS
 

Introduction, Engineering Standards, Blame – Responsibility and Causation, Liability, Design Standards.

Senses of 'Engineering Ethics' - variety of moral issued - types of inquiry - moral dilemmas - moral autonomy - Kohlberg's theory - Gilligan's theory - consensus and controversy – Models of Professional Roles - theories about right action - Self-interest - customs and religion - uses of ethical theories.

 

Unit-3
Teaching Hours:6
SOCIAL AND VALUE DIMENSIONS IN TECHNOLOGY
 

Technology – The Promise and Perils, Computer Technology – Privacy and Social Policy, Ownership of Computer Software and public Policy, Engineering Responsibility in Democratic Deliberation on Technology Policy, The Social Embeddedness of Technology.

Unit-3
Teaching Hours:6
SOCIAL AND VALUE DIMENSIONS IN TECHNOLOGY
 

Technology – The Promise and Perils, Computer Technology – Privacy and Social Policy, Ownership of Computer Software and public Policy, Engineering Responsibility in Democratic Deliberation on Technology Policy, The Social Embeddedness of Technology.

Unit-3
Teaching Hours:6
SOCIAL AND VALUE DIMENSIONS IN TECHNOLOGY
 

Technology – The Promise and Perils, Computer Technology – Privacy and Social Policy, Ownership of Computer Software and public Policy, Engineering Responsibility in Democratic Deliberation on Technology Policy, The Social Embeddedness of Technology.

Unit-4
Teaching Hours:6
ELECTRONICS ENGINEERING AND BUSINESS ETHICS
 

Ethics in Business – HR, Marketing, Finance and Accounting, Production and Operation

Ethics in Global Business – Ethical principles governing global business, ethical relations to adapting host countries, culture and norms.

Ethics in Electronics Engineering - IEEE Code of Ethics, Computer Ethics, Case Studies on ethical conflicts, Corporate Social Responsibility

Unit-4
Teaching Hours:6
ELECTRONICS ENGINEERING AND BUSINESS ETHICS
 

Ethics in Business – HR, Marketing, Finance and Accounting, Production and Operation

Ethics in Global Business – Ethical principles governing global business, ethical relations to adapting host countries, culture and norms.

Ethics in Electronics Engineering - IEEE Code of Ethics, Computer Ethics, Case Studies on ethical conflicts, Corporate Social Responsibility

Unit-4
Teaching Hours:6
ELECTRONICS ENGINEERING AND BUSINESS ETHICS
 

Ethics in Business – HR, Marketing, Finance and Accounting, Production and Operation

Ethics in Global Business – Ethical principles governing global business, ethical relations to adapting host countries, culture and norms.

Ethics in Electronics Engineering - IEEE Code of Ethics, Computer Ethics, Case Studies on ethical conflicts, Corporate Social Responsibility

Unit-5
Teaching Hours:6
ETHICS AND ENVIRONMENT
 

Environment in Law and Court Decisions, Criteria for “Clean Environment”, The progressive Attitude towards the Environment, Going beyond the Law, Respect for nature, Scope of Professional Engineering obligations to Environment.

Unit-5
Teaching Hours:6
ETHICS AND ENVIRONMENT
 

Environment in Law and Court Decisions, Criteria for “Clean Environment”, The progressive Attitude towards the Environment, Going beyond the Law, Respect for nature, Scope of Professional Engineering obligations to Environment.

Unit-5
Teaching Hours:6
ETHICS AND ENVIRONMENT
 

Environment in Law and Court Decisions, Criteria for “Clean Environment”, The progressive Attitude towards the Environment, Going beyond the Law, Respect for nature, Scope of Professional Engineering obligations to Environment.

Text Books And Reference Books:

T1. Mike Martin and Roland Schinzinger, “Ethics in Engineering”, McGraw-Hill, New York 1996. 

T2.  Govindarajan M, Natarajan S, Senthil Kumar V. S, “Engineering Ethics”, Prentice Hall of India, New Delhi, 2004.

 

Essential Reading / Recommended Reading

R1. Charles D. Fleddermann, “Engineering Ethics”, Pearson Education / Prentice Hall, New Jersey, 2004 (Indian Reprint).

R2. Charles E Harris, Michael S. Protchard and Michael J Rabins, “Engineering Ethics – Concepts and Cases”, Wadsworth Thompson Learning, United States, 2000 (Indian Reprint now available)

R3. John R Boatright, “Ethics and the Conduct of Business”, Pearson Education, New Delhi, 2003

R4. Edmund G Seebauer and Robert L Barry, “Fundamentals of Ethics for Scientists and Engineers”, Oxford University Press, Oxford, 2001.

 

Evaluation Pattern

Components of the CIA
CIA I : Subject Assignments / Online Tests : 10 marks
CIA II : Mid Semester Examination (Theory) : 25 marks
CIAIII:Quiz/Seminar/Case Studies/Project/Innovative Assignments/presentations
/publications : 10 marks
Attendance : 05 marks
Total : 50 marks
Mid Semester Examination (MSE) : Theory Papers:
The MSE is conducted for 50 marks of 2 hours duration.
Question paper pattern; Five out of Six questions have to be answered. Each question carries 10
marks
End Semester Examination (ESE):
The ESE is conducted for 50 marks of 2 hours duration.
The syllabus for the theory papers are divided into FIVE units and each unit carries equal weightage in terms of marks distribution.

 

OEC471 - NCC4 (2023 Batch)

Total Teaching Hours for Semester:15
No of Lecture Hours/Week:1
Max Marks:50
Credits:1

Course Objectives/Course Description

 

This course offers an integrated approach to disaster management, physical training, and aviation operations, designed to prepare students for effective response and leadership in emergency situations. It includes comprehensive training in physical fitness, fundamental drill techniques, aviation medicine, and standard operating procedures for ground handling. Students will also engage in practical exercises such as obstacle courses and social service activities to develop their skills in operational readiness, safety checks, and community engagement. This course equips students with the necessary skills to manage disasters effectively, maintain high safety standards, and contribute positively to their communities.

Master standard ground handling procedures and conduct thorough internal and external safety checks to ensure operational readiness and safety in aviation environments.

Apply principles of disaster management to effectively plan for and respond to emergency situations, ensuring efficient and coordinated disaster response.

Integrate theoretical knowledge with practical skills to address various challenges in disaster management and aviation safety, ensuring a comprehensive approach to both personal and professional development.

Learning Outcome

CO1: Demonstrate improved physical fitness, including cardiovascular endurance, strength, and flexibility, while mastering fundamental foot and rifle drills.

CO2: Exhibit leadership skills and effectively apply disaster management principles in practical scenarios

CO3: Demonstrate comprehensive knowledge and application of aviation safety protocols, including health and safety in aviation, medical emergencies and first aid, standard ground handling procedures

Unit-1
Teaching Hours:5
Physical Fitness and Drill Techniques
 
  • Foot Drill

    • Drill Movements and Commands: Perform essential drill movements and commands with precision.
    • Marching Techniques: Achieve accuracy in marching and maintaining formations.

    2. Rifle Drill

    • Rifle Handling and Safety: Master safe and effective rifle handling procedures.
    • Rifle Drill Movements: Execute rifle drills with proper posture and coordination.

    3. Ceremonial Drill

    • Conduct ceremonial drills, including inspections and parades, with precision and adherence to formal procedures
Unit-1
Teaching Hours:5
Physical Fitness and Drill Techniques
 
  • Foot Drill

    • Drill Movements and Commands: Perform essential drill movements and commands with precision.
    • Marching Techniques: Achieve accuracy in marching and maintaining formations.

    2. Rifle Drill

    • Rifle Handling and Safety: Master safe and effective rifle handling procedures.
    • Rifle Drill Movements: Execute rifle drills with proper posture and coordination.

    3. Ceremonial Drill

    • Conduct ceremonial drills, including inspections and parades, with precision and adherence to formal procedures
Unit-1
Teaching Hours:5
Physical Fitness and Drill Techniques
 
  • Foot Drill

    • Drill Movements and Commands: Perform essential drill movements and commands with precision.
    • Marching Techniques: Achieve accuracy in marching and maintaining formations.

    2. Rifle Drill

    • Rifle Handling and Safety: Master safe and effective rifle handling procedures.
    • Rifle Drill Movements: Execute rifle drills with proper posture and coordination.

    3. Ceremonial Drill

    • Conduct ceremonial drills, including inspections and parades, with precision and adherence to formal procedures
Unit-1
Teaching Hours:5
Physical Fitness and Drill Techniques
 
  • Foot Drill

    • Drill Movements and Commands: Perform essential drill movements and commands with precision.
    • Marching Techniques: Achieve accuracy in marching and maintaining formations.

    2. Rifle Drill

    • Rifle Handling and Safety: Master safe and effective rifle handling procedures.
    • Rifle Drill Movements: Execute rifle drills with proper posture and coordination.

    3. Ceremonial Drill

    • Conduct ceremonial drills, including inspections and parades, with precision and adherence to formal procedures
Unit-1
Teaching Hours:5
Physical Fitness and Drill Techniques
 
  • Foot Drill

    • Drill Movements and Commands: Perform essential drill movements and commands with precision.
    • Marching Techniques: Achieve accuracy in marching and maintaining formations.

    2. Rifle Drill

    • Rifle Handling and Safety: Master safe and effective rifle handling procedures.
    • Rifle Drill Movements: Execute rifle drills with proper posture and coordination.

    3. Ceremonial Drill

    • Conduct ceremonial drills, including inspections and parades, with precision and adherence to formal procedures
Unit-1
Teaching Hours:5
Physical Fitness and Drill Techniques
 
  • Foot Drill

    • Drill Movements and Commands: Perform essential drill movements and commands with precision.
    • Marching Techniques: Achieve accuracy in marching and maintaining formations.

    2. Rifle Drill

    • Rifle Handling and Safety: Master safe and effective rifle handling procedures.
    • Rifle Drill Movements: Execute rifle drills with proper posture and coordination.

    3. Ceremonial Drill

    • Conduct ceremonial drills, including inspections and parades, with precision and adherence to formal procedures
Unit-1
Teaching Hours:5
Physical Fitness and Drill Techniques
 
  • Foot Drill

    • Drill Movements and Commands: Perform essential drill movements and commands with precision.
    • Marching Techniques: Achieve accuracy in marching and maintaining formations.

    2. Rifle Drill

    • Rifle Handling and Safety: Master safe and effective rifle handling procedures.
    • Rifle Drill Movements: Execute rifle drills with proper posture and coordination.

    3. Ceremonial Drill

    • Conduct ceremonial drills, including inspections and parades, with precision and adherence to formal procedures
Unit-1
Teaching Hours:5
Physical Fitness and Drill Techniques
 
  • Foot Drill

    • Drill Movements and Commands: Perform essential drill movements and commands with precision.
    • Marching Techniques: Achieve accuracy in marching and maintaining formations.

    2. Rifle Drill

    • Rifle Handling and Safety: Master safe and effective rifle handling procedures.
    • Rifle Drill Movements: Execute rifle drills with proper posture and coordination.

    3. Ceremonial Drill

    • Conduct ceremonial drills, including inspections and parades, with precision and adherence to formal procedures
Unit-1
Teaching Hours:5
Physical Fitness and Drill Techniques
 
  • Foot Drill

    • Drill Movements and Commands: Perform essential drill movements and commands with precision.
    • Marching Techniques: Achieve accuracy in marching and maintaining formations.

    2. Rifle Drill

    • Rifle Handling and Safety: Master safe and effective rifle handling procedures.
    • Rifle Drill Movements: Execute rifle drills with proper posture and coordination.

    3. Ceremonial Drill

    • Conduct ceremonial drills, including inspections and parades, with precision and adherence to formal procedures
Unit-1
Teaching Hours:5
Physical Fitness and Drill Techniques
 
  • Foot Drill

    • Drill Movements and Commands: Perform essential drill movements and commands with precision.
    • Marching Techniques: Achieve accuracy in marching and maintaining formations.

    2. Rifle Drill

    • Rifle Handling and Safety: Master safe and effective rifle handling procedures.
    • Rifle Drill Movements: Execute rifle drills with proper posture and coordination.

    3. Ceremonial Drill

    • Conduct ceremonial drills, including inspections and parades, with precision and adherence to formal procedures
Unit-1
Teaching Hours:5
Physical Fitness and Drill Techniques
 
  • Foot Drill

    • Drill Movements and Commands: Perform essential drill movements and commands with precision.
    • Marching Techniques: Achieve accuracy in marching and maintaining formations.

    2. Rifle Drill

    • Rifle Handling and Safety: Master safe and effective rifle handling procedures.
    • Rifle Drill Movements: Execute rifle drills with proper posture and coordination.

    3. Ceremonial Drill

    • Conduct ceremonial drills, including inspections and parades, with precision and adherence to formal procedures
Unit-1
Teaching Hours:5
Physical Fitness and Drill Techniques
 
  • Foot Drill

    • Drill Movements and Commands: Perform essential drill movements and commands with precision.
    • Marching Techniques: Achieve accuracy in marching and maintaining formations.

    2. Rifle Drill

    • Rifle Handling and Safety: Master safe and effective rifle handling procedures.
    • Rifle Drill Movements: Execute rifle drills with proper posture and coordination.

    3. Ceremonial Drill

    • Conduct ceremonial drills, including inspections and parades, with precision and adherence to formal procedures
Unit-1
Teaching Hours:5
Physical Fitness and Drill Techniques
 
  • Foot Drill

    • Drill Movements and Commands: Perform essential drill movements and commands with precision.
    • Marching Techniques: Achieve accuracy in marching and maintaining formations.

    2. Rifle Drill

    • Rifle Handling and Safety: Master safe and effective rifle handling procedures.
    • Rifle Drill Movements: Execute rifle drills with proper posture and coordination.

    3. Ceremonial Drill

    • Conduct ceremonial drills, including inspections and parades, with precision and adherence to formal procedures
Unit-2
Teaching Hours:5
Leadership and Disaster Management
 
  • Leadership Development
    • Effective communication and teamwork
    • Decision-making and problem-solving
  • Disaster Management 1
    • Principles of disaster management
    • Risk assessment and mitigation strategies
  • Disaster Management 2
    • Emergency response planning
    • Recovery and resilience building

 

Unit-2
Teaching Hours:5
Leadership and Disaster Management
 
  • Leadership Development
    • Effective communication and teamwork
    • Decision-making and problem-solving
  • Disaster Management 1
    • Principles of disaster management
    • Risk assessment and mitigation strategies
  • Disaster Management 2
    • Emergency response planning
    • Recovery and resilience building

 

Unit-2
Teaching Hours:5
Leadership and Disaster Management
 
  • Leadership Development
    • Effective communication and teamwork
    • Decision-making and problem-solving
  • Disaster Management 1
    • Principles of disaster management
    • Risk assessment and mitigation strategies
  • Disaster Management 2
    • Emergency response planning
    • Recovery and resilience building

 

Unit-2
Teaching Hours:5
Leadership and Disaster Management
 
  • Leadership Development
    • Effective communication and teamwork
    • Decision-making and problem-solving
  • Disaster Management 1
    • Principles of disaster management
    • Risk assessment and mitigation strategies
  • Disaster Management 2
    • Emergency response planning
    • Recovery and resilience building

 

Unit-2
Teaching Hours:5
Leadership and Disaster Management
 
  • Leadership Development
    • Effective communication and teamwork
    • Decision-making and problem-solving
  • Disaster Management 1
    • Principles of disaster management
    • Risk assessment and mitigation strategies
  • Disaster Management 2
    • Emergency response planning
    • Recovery and resilience building

 

Unit-2
Teaching Hours:5
Leadership and Disaster Management
 
  • Leadership Development
    • Effective communication and teamwork
    • Decision-making and problem-solving
  • Disaster Management 1
    • Principles of disaster management
    • Risk assessment and mitigation strategies
  • Disaster Management 2
    • Emergency response planning
    • Recovery and resilience building

 

Unit-2
Teaching Hours:5
Leadership and Disaster Management
 
  • Leadership Development
    • Effective communication and teamwork
    • Decision-making and problem-solving
  • Disaster Management 1
    • Principles of disaster management
    • Risk assessment and mitigation strategies
  • Disaster Management 2
    • Emergency response planning
    • Recovery and resilience building

 

Unit-2
Teaching Hours:5
Leadership and Disaster Management
 
  • Leadership Development
    • Effective communication and teamwork
    • Decision-making and problem-solving
  • Disaster Management 1
    • Principles of disaster management
    • Risk assessment and mitigation strategies
  • Disaster Management 2
    • Emergency response planning
    • Recovery and resilience building

 

Unit-2
Teaching Hours:5
Leadership and Disaster Management
 
  • Leadership Development
    • Effective communication and teamwork
    • Decision-making and problem-solving
  • Disaster Management 1
    • Principles of disaster management
    • Risk assessment and mitigation strategies
  • Disaster Management 2
    • Emergency response planning
    • Recovery and resilience building

 

Unit-2
Teaching Hours:5
Leadership and Disaster Management
 
  • Leadership Development
    • Effective communication and teamwork
    • Decision-making and problem-solving
  • Disaster Management 1
    • Principles of disaster management
    • Risk assessment and mitigation strategies
  • Disaster Management 2
    • Emergency response planning
    • Recovery and resilience building

 

Unit-2
Teaching Hours:5
Leadership and Disaster Management
 
  • Leadership Development
    • Effective communication and teamwork
    • Decision-making and problem-solving
  • Disaster Management 1
    • Principles of disaster management
    • Risk assessment and mitigation strategies
  • Disaster Management 2
    • Emergency response planning
    • Recovery and resilience building

 

Unit-2
Teaching Hours:5
Leadership and Disaster Management
 
  • Leadership Development
    • Effective communication and teamwork
    • Decision-making and problem-solving
  • Disaster Management 1
    • Principles of disaster management
    • Risk assessment and mitigation strategies
  • Disaster Management 2
    • Emergency response planning
    • Recovery and resilience building

 

Unit-2
Teaching Hours:5
Leadership and Disaster Management
 
  • Leadership Development
    • Effective communication and teamwork
    • Decision-making and problem-solving
  • Disaster Management 1
    • Principles of disaster management
    • Risk assessment and mitigation strategies
  • Disaster Management 2
    • Emergency response planning
    • Recovery and resilience building

 

Unit-3
Teaching Hours:5
Aviation Safety and Operational Procedures
 
  • Aviation Medicine
    • Health and safety in aviation
    • Medical emergencies and first aid
  • Standard Ground Handling Procedures
    • Aircraft ground handling protocols
    • Safety checks before external inspections
  • Internal & External Checks
    • Detailed inspection procedures
    • Ensuring operational readiness and safety
Unit-3
Teaching Hours:5
Aviation Safety and Operational Procedures
 
  • Aviation Medicine
    • Health and safety in aviation
    • Medical emergencies and first aid
  • Standard Ground Handling Procedures
    • Aircraft ground handling protocols
    • Safety checks before external inspections
  • Internal & External Checks
    • Detailed inspection procedures
    • Ensuring operational readiness and safety
Unit-3
Teaching Hours:5
Aviation Safety and Operational Procedures
 
  • Aviation Medicine
    • Health and safety in aviation
    • Medical emergencies and first aid
  • Standard Ground Handling Procedures
    • Aircraft ground handling protocols
    • Safety checks before external inspections
  • Internal & External Checks
    • Detailed inspection procedures
    • Ensuring operational readiness and safety
Unit-3
Teaching Hours:5
Aviation Safety and Operational Procedures
 
  • Aviation Medicine
    • Health and safety in aviation
    • Medical emergencies and first aid
  • Standard Ground Handling Procedures
    • Aircraft ground handling protocols
    • Safety checks before external inspections
  • Internal & External Checks
    • Detailed inspection procedures
    • Ensuring operational readiness and safety
Unit-3
Teaching Hours:5
Aviation Safety and Operational Procedures
 
  • Aviation Medicine
    • Health and safety in aviation
    • Medical emergencies and first aid
  • Standard Ground Handling Procedures
    • Aircraft ground handling protocols
    • Safety checks before external inspections
  • Internal & External Checks
    • Detailed inspection procedures
    • Ensuring operational readiness and safety
Unit-3
Teaching Hours:5
Aviation Safety and Operational Procedures
 
  • Aviation Medicine
    • Health and safety in aviation
    • Medical emergencies and first aid
  • Standard Ground Handling Procedures
    • Aircraft ground handling protocols
    • Safety checks before external inspections
  • Internal & External Checks
    • Detailed inspection procedures
    • Ensuring operational readiness and safety
Unit-3
Teaching Hours:5
Aviation Safety and Operational Procedures
 
  • Aviation Medicine
    • Health and safety in aviation
    • Medical emergencies and first aid
  • Standard Ground Handling Procedures
    • Aircraft ground handling protocols
    • Safety checks before external inspections
  • Internal & External Checks
    • Detailed inspection procedures
    • Ensuring operational readiness and safety
Unit-3
Teaching Hours:5
Aviation Safety and Operational Procedures
 
  • Aviation Medicine
    • Health and safety in aviation
    • Medical emergencies and first aid
  • Standard Ground Handling Procedures
    • Aircraft ground handling protocols
    • Safety checks before external inspections
  • Internal & External Checks
    • Detailed inspection procedures
    • Ensuring operational readiness and safety
Unit-3
Teaching Hours:5
Aviation Safety and Operational Procedures
 
  • Aviation Medicine
    • Health and safety in aviation
    • Medical emergencies and first aid
  • Standard Ground Handling Procedures
    • Aircraft ground handling protocols
    • Safety checks before external inspections
  • Internal & External Checks
    • Detailed inspection procedures
    • Ensuring operational readiness and safety
Unit-3
Teaching Hours:5
Aviation Safety and Operational Procedures
 
  • Aviation Medicine
    • Health and safety in aviation
    • Medical emergencies and first aid
  • Standard Ground Handling Procedures
    • Aircraft ground handling protocols
    • Safety checks before external inspections
  • Internal & External Checks
    • Detailed inspection procedures
    • Ensuring operational readiness and safety
Unit-3
Teaching Hours:5
Aviation Safety and Operational Procedures
 
  • Aviation Medicine
    • Health and safety in aviation
    • Medical emergencies and first aid
  • Standard Ground Handling Procedures
    • Aircraft ground handling protocols
    • Safety checks before external inspections
  • Internal & External Checks
    • Detailed inspection procedures
    • Ensuring operational readiness and safety
Unit-3
Teaching Hours:5
Aviation Safety and Operational Procedures
 
  • Aviation Medicine
    • Health and safety in aviation
    • Medical emergencies and first aid
  • Standard Ground Handling Procedures
    • Aircraft ground handling protocols
    • Safety checks before external inspections
  • Internal & External Checks
    • Detailed inspection procedures
    • Ensuring operational readiness and safety
Unit-3
Teaching Hours:5
Aviation Safety and Operational Procedures
 
  • Aviation Medicine
    • Health and safety in aviation
    • Medical emergencies and first aid
  • Standard Ground Handling Procedures
    • Aircraft ground handling protocols
    • Safety checks before external inspections
  • Internal & External Checks
    • Detailed inspection procedures
    • Ensuring operational readiness and safety
Text Books And Reference Books:

1.Airwing Cadet Handbook, Specialized Subject SD/SW, Maxwell Press, 2016.

2. Airwing Cadet Handbook, Common Subject SD/SW, Maxwell Press, 2015.

Essential Reading / Recommended Reading

1.Airwing Cadet Handbook, Specialized Subject SD/SW, Maxwell Press, 2016.

2. Airwing Cadet Handbook, Common Subject SD/SW, Maxwell Press, 2015.

Evaluation Pattern

Attendance

(5)

Camp Attended(5)

Performance
Contribution
(10)

Personal and
Unit
Development (10)

Written Exam Marks  (20)

Total(50)

 

 

 

 

 

Evaluation Criteria

Excellent

Good

Average

Needs Improvement

Poor

9-10

7-8

6-7

5

0

Attendance

Has Participated in >= 95% of the NCC activities

Has Participated in >= 90%  and <95% of the NCC activities

Has Participated in >= 85%  and <90% of the NCC activities

Has Participated in >= 80%  and <85% of the NCC activities

Has attendance percentage less than 80%

Camp Attended(20)

10

9

6-8

5

0

National camp(RD)

National cam p AIVSC

Other National camps

Unit level Camps

No camps

Performance Contribution

8 – 10

6 – 7

4 – 5

1 – 3

0

Was a self-starter; consistently sought new challenges and asked for additional work assignments; regularly approached and solved problems independently; frequently proposed innovative and creative ideas, solutions, and/or options

Worked without extensive supervision; in some cases, found problems to solve and sometimes asked for additional work assignments; normally set his/her own goals and, in a few cases, tried to exceed requirements; offered some creative ideas

Had little observable drive and required close supervision; showed little if any interest in meeting standards; did not seek out additional work and frequently procrastinated in completing assignments; suggested no new ideas or options

Wasn’t regular.

No new ideas projected or discussed.

Didn’t complete the given tasks in the mentioned time limit.

Hasn’t visited the company.

 

8 – 10

6 – 7

4 – 5

1 – 3

0

Personal and
Professional
Development

Will develop a practical “working knowledge” and understanding of NCC expectations.

 

 

Will develop a practical “working knowledge” and understanding of workplace expectations.

 

 

Will develop a general understanding of workplace expectations.

 

 

Activities participated did not provide/or allow for understanding of workplace expectations.

 

 

Hasn’t Contributed to NCC

OEC472 - ABILITY ENHANCEMENT COURSE - IV (2023 Batch)

Total Teaching Hours for Semester:42
No of Lecture Hours/Week:2
Max Marks:50
Credits:1

Course Objectives/Course Description

 

Course Description:

This course enhances essential skills across five units: presentation and writing skills, assertiveness and teamwork, interview techniques, quantitative aptitude, and C++ programming. It covers planning and delivering presentations, advanced writing practices, assertive communication, effective teamwork, and mastering job interviews. The course also includes mathematical concepts like averages, data sufficiency, permutations, combinations, and probability. Additionally, it provides comprehensive training in C++ programming, focusing on object-oriented principles, dynamic memory management, and advanced features.

Course Objective:

1. Develop effective presentation skills, including planning, structuring, and engaging the audience.

2. Enhance writing proficiency with a focus on paragraph organization, proper punctuation, and error correction.

3. Cultivate assertive communication and teamwork strategies for collaborative success.

4. Master interview techniques, including preparation, execution, and follow-up.

5. Understand and apply mathematical concepts in averages, mixtures, data sufficiency, permutations, combinations, and probability.

Learning Outcome

CO1: Deliver structured and visually supported presentations with confidence.

CO2: Write coherent, concise, and error-free documents.

CO3: Communicate assertively and work effectively within teams.

CO4: Successfully navigate various types of interviews and handle challenging questions.

CO5: Solve complex mathematical problems involving averages, mixtures, permutations, combinations, and probability.

Unit-1
Teaching Hours:6
Presentation Skills
 

Planning and Structuring a Presentation

> Effective Use of Visual Aids

> Engaging the Audience: Techniques and Strategies

> Overcoming Stage Fear

> Evaluating Presentation Success

Nature and Style of sensible writing :

1. Organizing Principles of Paragraphs in Documents, Writing Introduction and Conclusion, Importance of

Proper Punctuation, The Art of Condensation (Precise writing) and Techniques in Essay writing, Common

Errors due to Indianism in English Communication, Creating Coherence and Cohesion, Sentence

arrangements exercises, Practice of Sentence Corrections activities. Importance of Summarising and

Paraphrasing.

2. Misplaced modifiers, Contractions, Collocations, Word Order, Errors due to the Confusion of words,

Common errors in the use of Idioms and phrases, Gender, Singular & Plural. Redundancies & Clichés.

 

Unit-1
Teaching Hours:6
Presentation Skills
 

Planning and Structuring a Presentation

> Effective Use of Visual Aids

> Engaging the Audience: Techniques and Strategies

> Overcoming Stage Fear

> Evaluating Presentation Success

Nature and Style of sensible writing :

1. Organizing Principles of Paragraphs in Documents, Writing Introduction and Conclusion, Importance of

Proper Punctuation, The Art of Condensation (Precise writing) and Techniques in Essay writing, Common

Errors due to Indianism in English Communication, Creating Coherence and Cohesion, Sentence

arrangements exercises, Practice of Sentence Corrections activities. Importance of Summarising and

Paraphrasing.

2. Misplaced modifiers, Contractions, Collocations, Word Order, Errors due to the Confusion of words,

Common errors in the use of Idioms and phrases, Gender, Singular & Plural. Redundancies & Clichés.

 

Unit-1
Teaching Hours:6
Presentation Skills
 

Planning and Structuring a Presentation

> Effective Use of Visual Aids

> Engaging the Audience: Techniques and Strategies

> Overcoming Stage Fear

> Evaluating Presentation Success

Nature and Style of sensible writing :

1. Organizing Principles of Paragraphs in Documents, Writing Introduction and Conclusion, Importance of

Proper Punctuation, The Art of Condensation (Precise writing) and Techniques in Essay writing, Common

Errors due to Indianism in English Communication, Creating Coherence and Cohesion, Sentence

arrangements exercises, Practice of Sentence Corrections activities. Importance of Summarising and

Paraphrasing.

2. Misplaced modifiers, Contractions, Collocations, Word Order, Errors due to the Confusion of words,

Common errors in the use of Idioms and phrases, Gender, Singular & Plural. Redundancies & Clichés.

 

Unit-1
Teaching Hours:6
Presentation Skills
 

Planning and Structuring a Presentation

> Effective Use of Visual Aids

> Engaging the Audience: Techniques and Strategies

> Overcoming Stage Fear

> Evaluating Presentation Success

Nature and Style of sensible writing :

1. Organizing Principles of Paragraphs in Documents, Writing Introduction and Conclusion, Importance of

Proper Punctuation, The Art of Condensation (Precise writing) and Techniques in Essay writing, Common

Errors due to Indianism in English Communication, Creating Coherence and Cohesion, Sentence

arrangements exercises, Practice of Sentence Corrections activities. Importance of Summarising and

Paraphrasing.

2. Misplaced modifiers, Contractions, Collocations, Word Order, Errors due to the Confusion of words,

Common errors in the use of Idioms and phrases, Gender, Singular & Plural. Redundancies & Clichés.

 

Unit-1
Teaching Hours:6
Presentation Skills
 

Planning and Structuring a Presentation

> Effective Use of Visual Aids

> Engaging the Audience: Techniques and Strategies

> Overcoming Stage Fear

> Evaluating Presentation Success

Nature and Style of sensible writing :

1. Organizing Principles of Paragraphs in Documents, Writing Introduction and Conclusion, Importance of

Proper Punctuation, The Art of Condensation (Precise writing) and Techniques in Essay writing, Common

Errors due to Indianism in English Communication, Creating Coherence and Cohesion, Sentence

arrangements exercises, Practice of Sentence Corrections activities. Importance of Summarising and

Paraphrasing.

2. Misplaced modifiers, Contractions, Collocations, Word Order, Errors due to the Confusion of words,

Common errors in the use of Idioms and phrases, Gender, Singular & Plural. Redundancies & Clichés.

 

Unit-1
Teaching Hours:6
Presentation Skills
 

Planning and Structuring a Presentation

> Effective Use of Visual Aids

> Engaging the Audience: Techniques and Strategies

> Overcoming Stage Fear

> Evaluating Presentation Success

Nature and Style of sensible writing :

1. Organizing Principles of Paragraphs in Documents, Writing Introduction and Conclusion, Importance of

Proper Punctuation, The Art of Condensation (Precise writing) and Techniques in Essay writing, Common

Errors due to Indianism in English Communication, Creating Coherence and Cohesion, Sentence

arrangements exercises, Practice of Sentence Corrections activities. Importance of Summarising and

Paraphrasing.

2. Misplaced modifiers, Contractions, Collocations, Word Order, Errors due to the Confusion of words,

Common errors in the use of Idioms and phrases, Gender, Singular & Plural. Redundancies & Clichés.

 

Unit-1
Teaching Hours:6
Presentation Skills
 

Planning and Structuring a Presentation

> Effective Use of Visual Aids

> Engaging the Audience: Techniques and Strategies

> Overcoming Stage Fear

> Evaluating Presentation Success

Nature and Style of sensible writing :

1. Organizing Principles of Paragraphs in Documents, Writing Introduction and Conclusion, Importance of

Proper Punctuation, The Art of Condensation (Precise writing) and Techniques in Essay writing, Common

Errors due to Indianism in English Communication, Creating Coherence and Cohesion, Sentence

arrangements exercises, Practice of Sentence Corrections activities. Importance of Summarising and

Paraphrasing.

2. Misplaced modifiers, Contractions, Collocations, Word Order, Errors due to the Confusion of words,

Common errors in the use of Idioms and phrases, Gender, Singular & Plural. Redundancies & Clichés.

 

Unit-1
Teaching Hours:6
Presentation Skills
 

Planning and Structuring a Presentation

> Effective Use of Visual Aids

> Engaging the Audience: Techniques and Strategies

> Overcoming Stage Fear

> Evaluating Presentation Success

Nature and Style of sensible writing :

1. Organizing Principles of Paragraphs in Documents, Writing Introduction and Conclusion, Importance of

Proper Punctuation, The Art of Condensation (Precise writing) and Techniques in Essay writing, Common

Errors due to Indianism in English Communication, Creating Coherence and Cohesion, Sentence

arrangements exercises, Practice of Sentence Corrections activities. Importance of Summarising and

Paraphrasing.

2. Misplaced modifiers, Contractions, Collocations, Word Order, Errors due to the Confusion of words,

Common errors in the use of Idioms and phrases, Gender, Singular & Plural. Redundancies & Clichés.

 

Unit-1
Teaching Hours:6
Presentation Skills
 

Planning and Structuring a Presentation

> Effective Use of Visual Aids

> Engaging the Audience: Techniques and Strategies

> Overcoming Stage Fear

> Evaluating Presentation Success

Nature and Style of sensible writing :

1. Organizing Principles of Paragraphs in Documents, Writing Introduction and Conclusion, Importance of

Proper Punctuation, The Art of Condensation (Precise writing) and Techniques in Essay writing, Common

Errors due to Indianism in English Communication, Creating Coherence and Cohesion, Sentence

arrangements exercises, Practice of Sentence Corrections activities. Importance of Summarising and

Paraphrasing.

2. Misplaced modifiers, Contractions, Collocations, Word Order, Errors due to the Confusion of words,

Common errors in the use of Idioms and phrases, Gender, Singular & Plural. Redundancies & Clichés.

 

Unit-1
Teaching Hours:6
Presentation Skills
 

Planning and Structuring a Presentation

> Effective Use of Visual Aids

> Engaging the Audience: Techniques and Strategies

> Overcoming Stage Fear

> Evaluating Presentation Success

Nature and Style of sensible writing :

1. Organizing Principles of Paragraphs in Documents, Writing Introduction and Conclusion, Importance of

Proper Punctuation, The Art of Condensation (Precise writing) and Techniques in Essay writing, Common

Errors due to Indianism in English Communication, Creating Coherence and Cohesion, Sentence

arrangements exercises, Practice of Sentence Corrections activities. Importance of Summarising and

Paraphrasing.

2. Misplaced modifiers, Contractions, Collocations, Word Order, Errors due to the Confusion of words,

Common errors in the use of Idioms and phrases, Gender, Singular & Plural. Redundancies & Clichés.

 

Unit-1
Teaching Hours:6
Presentation Skills
 

Planning and Structuring a Presentation

> Effective Use of Visual Aids

> Engaging the Audience: Techniques and Strategies

> Overcoming Stage Fear

> Evaluating Presentation Success

Nature and Style of sensible writing :

1. Organizing Principles of Paragraphs in Documents, Writing Introduction and Conclusion, Importance of

Proper Punctuation, The Art of Condensation (Precise writing) and Techniques in Essay writing, Common

Errors due to Indianism in English Communication, Creating Coherence and Cohesion, Sentence

arrangements exercises, Practice of Sentence Corrections activities. Importance of Summarising and

Paraphrasing.

2. Misplaced modifiers, Contractions, Collocations, Word Order, Errors due to the Confusion of words,

Common errors in the use of Idioms and phrases, Gender, Singular & Plural. Redundancies & Clichés.

 

Unit-1
Teaching Hours:6
Presentation Skills
 

Planning and Structuring a Presentation

> Effective Use of Visual Aids

> Engaging the Audience: Techniques and Strategies

> Overcoming Stage Fear

> Evaluating Presentation Success

Nature and Style of sensible writing :

1. Organizing Principles of Paragraphs in Documents, Writing Introduction and Conclusion, Importance of

Proper Punctuation, The Art of Condensation (Precise writing) and Techniques in Essay writing, Common

Errors due to Indianism in English Communication, Creating Coherence and Cohesion, Sentence

arrangements exercises, Practice of Sentence Corrections activities. Importance of Summarising and

Paraphrasing.

2. Misplaced modifiers, Contractions, Collocations, Word Order, Errors due to the Confusion of words,

Common errors in the use of Idioms and phrases, Gender, Singular & Plural. Redundancies & Clichés.

 

Unit-1
Teaching Hours:6
Presentation Skills
 

Planning and Structuring a Presentation

> Effective Use of Visual Aids

> Engaging the Audience: Techniques and Strategies

> Overcoming Stage Fear

> Evaluating Presentation Success

Nature and Style of sensible writing :

1. Organizing Principles of Paragraphs in Documents, Writing Introduction and Conclusion, Importance of

Proper Punctuation, The Art of Condensation (Precise writing) and Techniques in Essay writing, Common

Errors due to Indianism in English Communication, Creating Coherence and Cohesion, Sentence

arrangements exercises, Practice of Sentence Corrections activities. Importance of Summarising and

Paraphrasing.

2. Misplaced modifiers, Contractions, Collocations, Word Order, Errors due to the Confusion of words,

Common errors in the use of Idioms and phrases, Gender, Singular & Plural. Redundancies & Clichés.

 

Unit-1
Teaching Hours:6
Presentation Skills
 

Planning and Structuring a Presentation

> Effective Use of Visual Aids

> Engaging the Audience: Techniques and Strategies

> Overcoming Stage Fear

> Evaluating Presentation Success

Nature and Style of sensible writing :

1. Organizing Principles of Paragraphs in Documents, Writing Introduction and Conclusion, Importance of

Proper Punctuation, The Art of Condensation (Precise writing) and Techniques in Essay writing, Common

Errors due to Indianism in English Communication, Creating Coherence and Cohesion, Sentence

arrangements exercises, Practice of Sentence Corrections activities. Importance of Summarising and

Paraphrasing.

2. Misplaced modifiers, Contractions, Collocations, Word Order, Errors due to the Confusion of words,

Common errors in the use of Idioms and phrases, Gender, Singular & Plural. Redundancies & Clichés.

 

Unit-2
Teaching Hours:6
Assertiveness
 

> Understanding the Difference: Assertiveness vs Aggressiveness

> Benefits of Being Assertive

> Techniques for Assertive Communication

> Saying No Politely and Firmly

> Assertiveness Role-Plays

 

Team Work and Collaboration

> Characteristics of Effective Teams

> Roles and Responsibilities within Teams

> Strategies for Collaborative Work

> Handling Team Conflicts

> Celebrating Team Successes

 

Unit-2
Teaching Hours:6
Assertiveness
 

> Understanding the Difference: Assertiveness vs Aggressiveness

> Benefits of Being Assertive

> Techniques for Assertive Communication

> Saying No Politely and Firmly

> Assertiveness Role-Plays

 

Team Work and Collaboration

> Characteristics of Effective Teams

> Roles and Responsibilities within Teams

> Strategies for Collaborative Work

> Handling Team Conflicts

> Celebrating Team Successes

 

Unit-2
Teaching Hours:6
Assertiveness
 

> Understanding the Difference: Assertiveness vs Aggressiveness

> Benefits of Being Assertive

> Techniques for Assertive Communication

> Saying No Politely and Firmly

> Assertiveness Role-Plays

 

Team Work and Collaboration

> Characteristics of Effective Teams

> Roles and Responsibilities within Teams

> Strategies for Collaborative Work

> Handling Team Conflicts

> Celebrating Team Successes

 

Unit-2
Teaching Hours:6
Assertiveness
 

> Understanding the Difference: Assertiveness vs Aggressiveness

> Benefits of Being Assertive

> Techniques for Assertive Communication

> Saying No Politely and Firmly

> Assertiveness Role-Plays

 

Team Work and Collaboration

> Characteristics of Effective Teams

> Roles and Responsibilities within Teams

> Strategies for Collaborative Work

> Handling Team Conflicts

> Celebrating Team Successes

 

Unit-2
Teaching Hours:6
Assertiveness
 

> Understanding the Difference: Assertiveness vs Aggressiveness

> Benefits of Being Assertive

> Techniques for Assertive Communication

> Saying No Politely and Firmly

> Assertiveness Role-Plays

 

Team Work and Collaboration

> Characteristics of Effective Teams

> Roles and Responsibilities within Teams

> Strategies for Collaborative Work

> Handling Team Conflicts

> Celebrating Team Successes

 

Unit-2
Teaching Hours:6
Assertiveness
 

> Understanding the Difference: Assertiveness vs Aggressiveness

> Benefits of Being Assertive

> Techniques for Assertive Communication

> Saying No Politely and Firmly

> Assertiveness Role-Plays

 

Team Work and Collaboration

> Characteristics of Effective Teams

> Roles and Responsibilities within Teams

> Strategies for Collaborative Work

> Handling Team Conflicts

> Celebrating Team Successes

 

Unit-2
Teaching Hours:6
Assertiveness
 

> Understanding the Difference: Assertiveness vs Aggressiveness

> Benefits of Being Assertive

> Techniques for Assertive Communication

> Saying No Politely and Firmly

> Assertiveness Role-Plays

 

Team Work and Collaboration

> Characteristics of Effective Teams

> Roles and Responsibilities within Teams

> Strategies for Collaborative Work

> Handling Team Conflicts

> Celebrating Team Successes

 

Unit-2
Teaching Hours:6
Assertiveness
 

> Understanding the Difference: Assertiveness vs Aggressiveness

> Benefits of Being Assertive

> Techniques for Assertive Communication

> Saying No Politely and Firmly

> Assertiveness Role-Plays

 

Team Work and Collaboration

> Characteristics of Effective Teams

> Roles and Responsibilities within Teams

> Strategies for Collaborative Work

> Handling Team Conflicts

> Celebrating Team Successes

 

Unit-2
Teaching Hours:6
Assertiveness
 

> Understanding the Difference: Assertiveness vs Aggressiveness

> Benefits of Being Assertive

> Techniques for Assertive Communication

> Saying No Politely and Firmly

> Assertiveness Role-Plays

 

Team Work and Collaboration

> Characteristics of Effective Teams

> Roles and Responsibilities within Teams

> Strategies for Collaborative Work

> Handling Team Conflicts

> Celebrating Team Successes

 

Unit-2
Teaching Hours:6
Assertiveness
 

> Understanding the Difference: Assertiveness vs Aggressiveness

> Benefits of Being Assertive

> Techniques for Assertive Communication

> Saying No Politely and Firmly

> Assertiveness Role-Plays

 

Team Work and Collaboration

> Characteristics of Effective Teams

> Roles and Responsibilities within Teams

> Strategies for Collaborative Work

> Handling Team Conflicts

> Celebrating Team Successes

 

Unit-2
Teaching Hours:6
Assertiveness
 

> Understanding the Difference: Assertiveness vs Aggressiveness

> Benefits of Being Assertive

> Techniques for Assertive Communication

> Saying No Politely and Firmly

> Assertiveness Role-Plays

 

Team Work and Collaboration

> Characteristics of Effective Teams

> Roles and Responsibilities within Teams

> Strategies for Collaborative Work

> Handling Team Conflicts

> Celebrating Team Successes

 

Unit-2
Teaching Hours:6
Assertiveness
 

> Understanding the Difference: Assertiveness vs Aggressiveness

> Benefits of Being Assertive

> Techniques for Assertive Communication

> Saying No Politely and Firmly

> Assertiveness Role-Plays

 

Team Work and Collaboration

> Characteristics of Effective Teams

> Roles and Responsibilities within Teams

> Strategies for Collaborative Work

> Handling Team Conflicts

> Celebrating Team Successes

 

Unit-2
Teaching Hours:6
Assertiveness
 

> Understanding the Difference: Assertiveness vs Aggressiveness

> Benefits of Being Assertive

> Techniques for Assertive Communication

> Saying No Politely and Firmly

> Assertiveness Role-Plays

 

Team Work and Collaboration

> Characteristics of Effective Teams

> Roles and Responsibilities within Teams

> Strategies for Collaborative Work

> Handling Team Conflicts

> Celebrating Team Successes

 

Unit-2
Teaching Hours:6
Assertiveness
 

> Understanding the Difference: Assertiveness vs Aggressiveness

> Benefits of Being Assertive

> Techniques for Assertive Communication

> Saying No Politely and Firmly

> Assertiveness Role-Plays

 

Team Work and Collaboration

> Characteristics of Effective Teams

> Roles and Responsibilities within Teams

> Strategies for Collaborative Work

> Handling Team Conflicts

> Celebrating Team Successes

 

Unit-3
Teaching Hours:6
Interview Skills
 

Interview Skills

 

> Introduction to Interviews

> The Purpose of an Interview

> Different Types of Interviews: Telephonic, Face-to-face, Panel, Behavioral, and Technical

 

> Before the Interview

> Researching the Company/Organization

> Analyzing the Job Description

> Preparing Relevant Answers for Common Interview Questions

 

> During the Interview

> Dress Code and Personal Grooming

> Body Language: Eye Contact, Posture, and Handshake

> Listening Actively and Responding Clearly

> Asking Thoughtful Questions to the Interviewer

 

> Technical vs Behavioral Interviews

> Understanding Technical Skill Evaluation

> STAR Technique (Situation, Task, Action, Result) for Behavioral Questions

 

> Handling Challenging Questions and Situations

> Addressing Gaps in Employment

> Discussing Strengths, Weaknesses, and Failures

> Navigating Salary Discussions

 

> After the Interview

> Crafting a Follow-up Email or Letter

> Reflecting on Interview Performance

> Preparing for the Next Steps

Unit-3
Teaching Hours:6
Interview Skills
 

Interview Skills

 

> Introduction to Interviews

> The Purpose of an Interview

> Different Types of Interviews: Telephonic, Face-to-face, Panel, Behavioral, and Technical

 

> Before the Interview

> Researching the Company/Organization

> Analyzing the Job Description

> Preparing Relevant Answers for Common Interview Questions

 

> During the Interview

> Dress Code and Personal Grooming

> Body Language: Eye Contact, Posture, and Handshake

> Listening Actively and Responding Clearly

> Asking Thoughtful Questions to the Interviewer

 

> Technical vs Behavioral Interviews

> Understanding Technical Skill Evaluation

> STAR Technique (Situation, Task, Action, Result) for Behavioral Questions

 

> Handling Challenging Questions and Situations

> Addressing Gaps in Employment

> Discussing Strengths, Weaknesses, and Failures

> Navigating Salary Discussions

 

> After the Interview

> Crafting a Follow-up Email or Letter

> Reflecting on Interview Performance

> Preparing for the Next Steps

Unit-3
Teaching Hours:6
Interview Skills
 

Interview Skills

 

> Introduction to Interviews

> The Purpose of an Interview

> Different Types of Interviews: Telephonic, Face-to-face, Panel, Behavioral, and Technical

 

> Before the Interview

> Researching the Company/Organization

> Analyzing the Job Description

> Preparing Relevant Answers for Common Interview Questions

 

> During the Interview

> Dress Code and Personal Grooming

> Body Language: Eye Contact, Posture, and Handshake

> Listening Actively and Responding Clearly

> Asking Thoughtful Questions to the Interviewer

 

> Technical vs Behavioral Interviews

> Understanding Technical Skill Evaluation

> STAR Technique (Situation, Task, Action, Result) for Behavioral Questions

 

> Handling Challenging Questions and Situations

> Addressing Gaps in Employment

> Discussing Strengths, Weaknesses, and Failures

> Navigating Salary Discussions

 

> After the Interview

> Crafting a Follow-up Email or Letter

> Reflecting on Interview Performance

> Preparing for the Next Steps

Unit-3
Teaching Hours:6
Interview Skills
 

Interview Skills

 

> Introduction to Interviews

> The Purpose of an Interview

> Different Types of Interviews: Telephonic, Face-to-face, Panel, Behavioral, and Technical

 

> Before the Interview

> Researching the Company/Organization

> Analyzing the Job Description

> Preparing Relevant Answers for Common Interview Questions

 

> During the Interview

> Dress Code and Personal Grooming

> Body Language: Eye Contact, Posture, and Handshake

> Listening Actively and Responding Clearly

> Asking Thoughtful Questions to the Interviewer

 

> Technical vs Behavioral Interviews

> Understanding Technical Skill Evaluation

> STAR Technique (Situation, Task, Action, Result) for Behavioral Questions

 

> Handling Challenging Questions and Situations

> Addressing Gaps in Employment

> Discussing Strengths, Weaknesses, and Failures

> Navigating Salary Discussions

 

> After the Interview

> Crafting a Follow-up Email or Letter

> Reflecting on Interview Performance

> Preparing for the Next Steps

Unit-3
Teaching Hours:6
Interview Skills
 

Interview Skills

 

> Introduction to Interviews

> The Purpose of an Interview

> Different Types of Interviews: Telephonic, Face-to-face, Panel, Behavioral, and Technical

 

> Before the Interview

> Researching the Company/Organization

> Analyzing the Job Description

> Preparing Relevant Answers for Common Interview Questions

 

> During the Interview

> Dress Code and Personal Grooming

> Body Language: Eye Contact, Posture, and Handshake

> Listening Actively and Responding Clearly

> Asking Thoughtful Questions to the Interviewer

 

> Technical vs Behavioral Interviews

> Understanding Technical Skill Evaluation

> STAR Technique (Situation, Task, Action, Result) for Behavioral Questions

 

> Handling Challenging Questions and Situations

> Addressing Gaps in Employment

> Discussing Strengths, Weaknesses, and Failures

> Navigating Salary Discussions

 

> After the Interview

> Crafting a Follow-up Email or Letter

> Reflecting on Interview Performance

> Preparing for the Next Steps

Unit-3
Teaching Hours:6
Interview Skills
 

Interview Skills

 

> Introduction to Interviews

> The Purpose of an Interview

> Different Types of Interviews: Telephonic, Face-to-face, Panel, Behavioral, and Technical

 

> Before the Interview

> Researching the Company/Organization

> Analyzing the Job Description

> Preparing Relevant Answers for Common Interview Questions

 

> During the Interview

> Dress Code and Personal Grooming

> Body Language: Eye Contact, Posture, and Handshake

> Listening Actively and Responding Clearly

> Asking Thoughtful Questions to the Interviewer

 

> Technical vs Behavioral Interviews

> Understanding Technical Skill Evaluation

> STAR Technique (Situation, Task, Action, Result) for Behavioral Questions

 

> Handling Challenging Questions and Situations

> Addressing Gaps in Employment

> Discussing Strengths, Weaknesses, and Failures

> Navigating Salary Discussions

 

> After the Interview

> Crafting a Follow-up Email or Letter

> Reflecting on Interview Performance

> Preparing for the Next Steps

Unit-3
Teaching Hours:6
Interview Skills
 

Interview Skills

 

> Introduction to Interviews

> The Purpose of an Interview

> Different Types of Interviews: Telephonic, Face-to-face, Panel, Behavioral, and Technical

 

> Before the Interview

> Researching the Company/Organization

> Analyzing the Job Description

> Preparing Relevant Answers for Common Interview Questions

 

> During the Interview

> Dress Code and Personal Grooming

> Body Language: Eye Contact, Posture, and Handshake

> Listening Actively and Responding Clearly

> Asking Thoughtful Questions to the Interviewer

 

> Technical vs Behavioral Interviews

> Understanding Technical Skill Evaluation

> STAR Technique (Situation, Task, Action, Result) for Behavioral Questions

 

> Handling Challenging Questions and Situations

> Addressing Gaps in Employment

> Discussing Strengths, Weaknesses, and Failures

> Navigating Salary Discussions

 

> After the Interview

> Crafting a Follow-up Email or Letter

> Reflecting on Interview Performance

> Preparing for the Next Steps

Unit-3
Teaching Hours:6
Interview Skills
 

Interview Skills

 

> Introduction to Interviews

> The Purpose of an Interview

> Different Types of Interviews: Telephonic, Face-to-face, Panel, Behavioral, and Technical

 

> Before the Interview

> Researching the Company/Organization

> Analyzing the Job Description

> Preparing Relevant Answers for Common Interview Questions

 

> During the Interview

> Dress Code and Personal Grooming

> Body Language: Eye Contact, Posture, and Handshake

> Listening Actively and Responding Clearly

> Asking Thoughtful Questions to the Interviewer

 

> Technical vs Behavioral Interviews

> Understanding Technical Skill Evaluation

> STAR Technique (Situation, Task, Action, Result) for Behavioral Questions

 

> Handling Challenging Questions and Situations

> Addressing Gaps in Employment

> Discussing Strengths, Weaknesses, and Failures

> Navigating Salary Discussions

 

> After the Interview

> Crafting a Follow-up Email or Letter

> Reflecting on Interview Performance

> Preparing for the Next Steps

Unit-3
Teaching Hours:6
Interview Skills
 

Interview Skills

 

> Introduction to Interviews

> The Purpose of an Interview

> Different Types of Interviews: Telephonic, Face-to-face, Panel, Behavioral, and Technical

 

> Before the Interview

> Researching the Company/Organization

> Analyzing the Job Description

> Preparing Relevant Answers for Common Interview Questions

 

> During the Interview

> Dress Code and Personal Grooming

> Body Language: Eye Contact, Posture, and Handshake

> Listening Actively and Responding Clearly

> Asking Thoughtful Questions to the Interviewer

 

> Technical vs Behavioral Interviews

> Understanding Technical Skill Evaluation

> STAR Technique (Situation, Task, Action, Result) for Behavioral Questions

 

> Handling Challenging Questions and Situations

> Addressing Gaps in Employment

> Discussing Strengths, Weaknesses, and Failures

> Navigating Salary Discussions

 

> After the Interview

> Crafting a Follow-up Email or Letter

> Reflecting on Interview Performance

> Preparing for the Next Steps

Unit-3
Teaching Hours:6
Interview Skills
 

Interview Skills

 

> Introduction to Interviews

> The Purpose of an Interview

> Different Types of Interviews: Telephonic, Face-to-face, Panel, Behavioral, and Technical

 

> Before the Interview

> Researching the Company/Organization

> Analyzing the Job Description

> Preparing Relevant Answers for Common Interview Questions

 

> During the Interview

> Dress Code and Personal Grooming

> Body Language: Eye Contact, Posture, and Handshake

> Listening Actively and Responding Clearly

> Asking Thoughtful Questions to the Interviewer

 

> Technical vs Behavioral Interviews

> Understanding Technical Skill Evaluation

> STAR Technique (Situation, Task, Action, Result) for Behavioral Questions

 

> Handling Challenging Questions and Situations

> Addressing Gaps in Employment

> Discussing Strengths, Weaknesses, and Failures

> Navigating Salary Discussions

 

> After the Interview

> Crafting a Follow-up Email or Letter

> Reflecting on Interview Performance

> Preparing for the Next Steps

Unit-3
Teaching Hours:6
Interview Skills
 

Interview Skills

 

> Introduction to Interviews

> The Purpose of an Interview

> Different Types of Interviews: Telephonic, Face-to-face, Panel, Behavioral, and Technical

 

> Before the Interview

> Researching the Company/Organization

> Analyzing the Job Description

> Preparing Relevant Answers for Common Interview Questions

 

> During the Interview

> Dress Code and Personal Grooming

> Body Language: Eye Contact, Posture, and Handshake

> Listening Actively and Responding Clearly

> Asking Thoughtful Questions to the Interviewer

 

> Technical vs Behavioral Interviews

> Understanding Technical Skill Evaluation

> STAR Technique (Situation, Task, Action, Result) for Behavioral Questions

 

> Handling Challenging Questions and Situations

> Addressing Gaps in Employment

> Discussing Strengths, Weaknesses, and Failures

> Navigating Salary Discussions

 

> After the Interview

> Crafting a Follow-up Email or Letter

> Reflecting on Interview Performance

> Preparing for the Next Steps

Unit-3
Teaching Hours:6
Interview Skills
 

Interview Skills

 

> Introduction to Interviews

> The Purpose of an Interview

> Different Types of Interviews: Telephonic, Face-to-face, Panel, Behavioral, and Technical

 

> Before the Interview

> Researching the Company/Organization

> Analyzing the Job Description

> Preparing Relevant Answers for Common Interview Questions

 

> During the Interview

> Dress Code and Personal Grooming

> Body Language: Eye Contact, Posture, and Handshake

> Listening Actively and Responding Clearly

> Asking Thoughtful Questions to the Interviewer

 

> Technical vs Behavioral Interviews

> Understanding Technical Skill Evaluation

> STAR Technique (Situation, Task, Action, Result) for Behavioral Questions

 

> Handling Challenging Questions and Situations

> Addressing Gaps in Employment

> Discussing Strengths, Weaknesses, and Failures

> Navigating Salary Discussions

 

> After the Interview

> Crafting a Follow-up Email or Letter

> Reflecting on Interview Performance

> Preparing for the Next Steps

Unit-3
Teaching Hours:6
Interview Skills
 

Interview Skills

 

> Introduction to Interviews

> The Purpose of an Interview

> Different Types of Interviews: Telephonic, Face-to-face, Panel, Behavioral, and Technical

 

> Before the Interview

> Researching the Company/Organization

> Analyzing the Job Description

> Preparing Relevant Answers for Common Interview Questions

 

> During the Interview

> Dress Code and Personal Grooming

> Body Language: Eye Contact, Posture, and Handshake

> Listening Actively and Responding Clearly

> Asking Thoughtful Questions to the Interviewer

 

> Technical vs Behavioral Interviews

> Understanding Technical Skill Evaluation

> STAR Technique (Situation, Task, Action, Result) for Behavioral Questions

 

> Handling Challenging Questions and Situations

> Addressing Gaps in Employment

> Discussing Strengths, Weaknesses, and Failures

> Navigating Salary Discussions

 

> After the Interview

> Crafting a Follow-up Email or Letter

> Reflecting on Interview Performance

> Preparing for the Next Steps

Unit-3
Teaching Hours:6
Interview Skills
 

Interview Skills

 

> Introduction to Interviews

> The Purpose of an Interview

> Different Types of Interviews: Telephonic, Face-to-face, Panel, Behavioral, and Technical

 

> Before the Interview

> Researching the Company/Organization

> Analyzing the Job Description

> Preparing Relevant Answers for Common Interview Questions

 

> During the Interview

> Dress Code and Personal Grooming

> Body Language: Eye Contact, Posture, and Handshake

> Listening Actively and Responding Clearly

> Asking Thoughtful Questions to the Interviewer

 

> Technical vs Behavioral Interviews

> Understanding Technical Skill Evaluation

> STAR Technique (Situation, Task, Action, Result) for Behavioral Questions

 

> Handling Challenging Questions and Situations

> Addressing Gaps in Employment

> Discussing Strengths, Weaknesses, and Failures

> Navigating Salary Discussions

 

> After the Interview

> Crafting a Follow-up Email or Letter

> Reflecting on Interview Performance

> Preparing for the Next Steps

Unit-4
Teaching Hours:8
Averages and Alligations mixtures:
 

Average: relevance of average, meaning of average, properties of average, deviation method, concept of weighted average. Allegation method: a situation where allegation technique, general representation of allegations, the straight line approach, application of weighted average and allegation method in problems involving mixtures. Application of alligation on situations other than mixtures problems.

 

Data Sufficiency: Questions based on

> Quantitative aptitude

> Reasoning aptitude

> Puzzles

Permutation and Combination: Understanding the difference between the permutation and combination, Rules of Counting-rule of addition, rule of multiplication, factorial function, Concept of step arrangement, Permutation of things when some of them are identical, Concept of 2n, Arrangement in a circle.

Probability: Single event probability, multi event probability, independent events and dependent events, mutually exclusive events, non-mutually exclusive events, combination method for finding the outcomes.

 

Unit-4
Teaching Hours:8
Averages and Alligations mixtures:
 

Average: relevance of average, meaning of average, properties of average, deviation method, concept of weighted average. Allegation method: a situation where allegation technique, general representation of allegations, the straight line approach, application of weighted average and allegation method in problems involving mixtures. Application of alligation on situations other than mixtures problems.

 

Data Sufficiency: Questions based on

> Quantitative aptitude

> Reasoning aptitude

> Puzzles

Permutation and Combination: Understanding the difference between the permutation and combination, Rules of Counting-rule of addition, rule of multiplication, factorial function, Concept of step arrangement, Permutation of things when some of them are identical, Concept of 2n, Arrangement in a circle.

Probability: Single event probability, multi event probability, independent events and dependent events, mutually exclusive events, non-mutually exclusive events, combination method for finding the outcomes.

 

Unit-4
Teaching Hours:8
Averages and Alligations mixtures:
 

Average: relevance of average, meaning of average, properties of average, deviation method, concept of weighted average. Allegation method: a situation where allegation technique, general representation of allegations, the straight line approach, application of weighted average and allegation method in problems involving mixtures. Application of alligation on situations other than mixtures problems.

 

Data Sufficiency: Questions based on

> Quantitative aptitude

> Reasoning aptitude

> Puzzles

Permutation and Combination: Understanding the difference between the permutation and combination, Rules of Counting-rule of addition, rule of multiplication, factorial function, Concept of step arrangement, Permutation of things when some of them are identical, Concept of 2n, Arrangement in a circle.

Probability: Single event probability, multi event probability, independent events and dependent events, mutually exclusive events, non-mutually exclusive events, combination method for finding the outcomes.

 

Unit-4
Teaching Hours:8
Averages and Alligations mixtures:
 

Average: relevance of average, meaning of average, properties of average, deviation method, concept of weighted average. Allegation method: a situation where allegation technique, general representation of allegations, the straight line approach, application of weighted average and allegation method in problems involving mixtures. Application of alligation on situations other than mixtures problems.

 

Data Sufficiency: Questions based on

> Quantitative aptitude

> Reasoning aptitude

> Puzzles

Permutation and Combination: Understanding the difference between the permutation and combination, Rules of Counting-rule of addition, rule of multiplication, factorial function, Concept of step arrangement, Permutation of things when some of them are identical, Concept of 2n, Arrangement in a circle.

Probability: Single event probability, multi event probability, independent events and dependent events, mutually exclusive events, non-mutually exclusive events, combination method for finding the outcomes.

 

Unit-4
Teaching Hours:8
Averages and Alligations mixtures:
 

Average: relevance of average, meaning of average, properties of average, deviation method, concept of weighted average. Allegation method: a situation where allegation technique, general representation of allegations, the straight line approach, application of weighted average and allegation method in problems involving mixtures. Application of alligation on situations other than mixtures problems.

 

Data Sufficiency: Questions based on

> Quantitative aptitude

> Reasoning aptitude

> Puzzles

Permutation and Combination: Understanding the difference between the permutation and combination, Rules of Counting-rule of addition, rule of multiplication, factorial function, Concept of step arrangement, Permutation of things when some of them are identical, Concept of 2n, Arrangement in a circle.

Probability: Single event probability, multi event probability, independent events and dependent events, mutually exclusive events, non-mutually exclusive events, combination method for finding the outcomes.

 

Unit-4
Teaching Hours:8
Averages and Alligations mixtures:
 

Average: relevance of average, meaning of average, properties of average, deviation method, concept of weighted average. Allegation method: a situation where allegation technique, general representation of allegations, the straight line approach, application of weighted average and allegation method in problems involving mixtures. Application of alligation on situations other than mixtures problems.

 

Data Sufficiency: Questions based on

> Quantitative aptitude

> Reasoning aptitude

> Puzzles

Permutation and Combination: Understanding the difference between the permutation and combination, Rules of Counting-rule of addition, rule of multiplication, factorial function, Concept of step arrangement, Permutation of things when some of them are identical, Concept of 2n, Arrangement in a circle.

Probability: Single event probability, multi event probability, independent events and dependent events, mutually exclusive events, non-mutually exclusive events, combination method for finding the outcomes.

 

Unit-4
Teaching Hours:8
Averages and Alligations mixtures:
 

Average: relevance of average, meaning of average, properties of average, deviation method, concept of weighted average. Allegation method: a situation where allegation technique, general representation of allegations, the straight line approach, application of weighted average and allegation method in problems involving mixtures. Application of alligation on situations other than mixtures problems.

 

Data Sufficiency: Questions based on

> Quantitative aptitude

> Reasoning aptitude

> Puzzles

Permutation and Combination: Understanding the difference between the permutation and combination, Rules of Counting-rule of addition, rule of multiplication, factorial function, Concept of step arrangement, Permutation of things when some of them are identical, Concept of 2n, Arrangement in a circle.

Probability: Single event probability, multi event probability, independent events and dependent events, mutually exclusive events, non-mutually exclusive events, combination method for finding the outcomes.

 

Unit-4
Teaching Hours:8
Averages and Alligations mixtures:
 

Average: relevance of average, meaning of average, properties of average, deviation method, concept of weighted average. Allegation method: a situation where allegation technique, general representation of allegations, the straight line approach, application of weighted average and allegation method in problems involving mixtures. Application of alligation on situations other than mixtures problems.

 

Data Sufficiency: Questions based on

> Quantitative aptitude

> Reasoning aptitude

> Puzzles

Permutation and Combination: Understanding the difference between the permutation and combination, Rules of Counting-rule of addition, rule of multiplication, factorial function, Concept of step arrangement, Permutation of things when some of them are identical, Concept of 2n, Arrangement in a circle.

Probability: Single event probability, multi event probability, independent events and dependent events, mutually exclusive events, non-mutually exclusive events, combination method for finding the outcomes.

 

Unit-4
Teaching Hours:8
Averages and Alligations mixtures:
 

Average: relevance of average, meaning of average, properties of average, deviation method, concept of weighted average. Allegation method: a situation where allegation technique, general representation of allegations, the straight line approach, application of weighted average and allegation method in problems involving mixtures. Application of alligation on situations other than mixtures problems.

 

Data Sufficiency: Questions based on

> Quantitative aptitude

> Reasoning aptitude

> Puzzles

Permutation and Combination: Understanding the difference between the permutation and combination, Rules of Counting-rule of addition, rule of multiplication, factorial function, Concept of step arrangement, Permutation of things when some of them are identical, Concept of 2n, Arrangement in a circle.

Probability: Single event probability, multi event probability, independent events and dependent events, mutually exclusive events, non-mutually exclusive events, combination method for finding the outcomes.

 

Unit-4
Teaching Hours:8
Averages and Alligations mixtures:
 

Average: relevance of average, meaning of average, properties of average, deviation method, concept of weighted average. Allegation method: a situation where allegation technique, general representation of allegations, the straight line approach, application of weighted average and allegation method in problems involving mixtures. Application of alligation on situations other than mixtures problems.

 

Data Sufficiency: Questions based on

> Quantitative aptitude

> Reasoning aptitude

> Puzzles

Permutation and Combination: Understanding the difference between the permutation and combination, Rules of Counting-rule of addition, rule of multiplication, factorial function, Concept of step arrangement, Permutation of things when some of them are identical, Concept of 2n, Arrangement in a circle.

Probability: Single event probability, multi event probability, independent events and dependent events, mutually exclusive events, non-mutually exclusive events, combination method for finding the outcomes.

 

Unit-4
Teaching Hours:8
Averages and Alligations mixtures:
 

Average: relevance of average, meaning of average, properties of average, deviation method, concept of weighted average. Allegation method: a situation where allegation technique, general representation of allegations, the straight line approach, application of weighted average and allegation method in problems involving mixtures. Application of alligation on situations other than mixtures problems.

 

Data Sufficiency: Questions based on

> Quantitative aptitude

> Reasoning aptitude

> Puzzles

Permutation and Combination: Understanding the difference between the permutation and combination, Rules of Counting-rule of addition, rule of multiplication, factorial function, Concept of step arrangement, Permutation of things when some of them are identical, Concept of 2n, Arrangement in a circle.

Probability: Single event probability, multi event probability, independent events and dependent events, mutually exclusive events, non-mutually exclusive events, combination method for finding the outcomes.

 

Unit-4
Teaching Hours:8
Averages and Alligations mixtures:
 

Average: relevance of average, meaning of average, properties of average, deviation method, concept of weighted average. Allegation method: a situation where allegation technique, general representation of allegations, the straight line approach, application of weighted average and allegation method in problems involving mixtures. Application of alligation on situations other than mixtures problems.

 

Data Sufficiency: Questions based on

> Quantitative aptitude

> Reasoning aptitude

> Puzzles

Permutation and Combination: Understanding the difference between the permutation and combination, Rules of Counting-rule of addition, rule of multiplication, factorial function, Concept of step arrangement, Permutation of things when some of them are identical, Concept of 2n, Arrangement in a circle.

Probability: Single event probability, multi event probability, independent events and dependent events, mutually exclusive events, non-mutually exclusive events, combination method for finding the outcomes.

 

Unit-4
Teaching Hours:8
Averages and Alligations mixtures:
 

Average: relevance of average, meaning of average, properties of average, deviation method, concept of weighted average. Allegation method: a situation where allegation technique, general representation of allegations, the straight line approach, application of weighted average and allegation method in problems involving mixtures. Application of alligation on situations other than mixtures problems.

 

Data Sufficiency: Questions based on

> Quantitative aptitude

> Reasoning aptitude

> Puzzles

Permutation and Combination: Understanding the difference between the permutation and combination, Rules of Counting-rule of addition, rule of multiplication, factorial function, Concept of step arrangement, Permutation of things when some of them are identical, Concept of 2n, Arrangement in a circle.

Probability: Single event probability, multi event probability, independent events and dependent events, mutually exclusive events, non-mutually exclusive events, combination method for finding the outcomes.

 

Unit-4
Teaching Hours:8
Averages and Alligations mixtures:
 

Average: relevance of average, meaning of average, properties of average, deviation method, concept of weighted average. Allegation method: a situation where allegation technique, general representation of allegations, the straight line approach, application of weighted average and allegation method in problems involving mixtures. Application of alligation on situations other than mixtures problems.

 

Data Sufficiency: Questions based on

> Quantitative aptitude

> Reasoning aptitude

> Puzzles

Permutation and Combination: Understanding the difference between the permutation and combination, Rules of Counting-rule of addition, rule of multiplication, factorial function, Concept of step arrangement, Permutation of things when some of them are identical, Concept of 2n, Arrangement in a circle.

Probability: Single event probability, multi event probability, independent events and dependent events, mutually exclusive events, non-mutually exclusive events, combination method for finding the outcomes.

 

Unit-5
Teaching Hours:14
C++ Object oriented Programming
 

· Class and Objects

 · Dynamic Memory Management POP,

 · OOPs in C++

 · Console Input / Output in C++

 · Comment lines in C++

 · Importance of function prototyping in C++

 · Function overloading

 · Inline functions and default arguments

 · Scope Resolution Operator

 · Structures

 · Defining function outside the class

 · Friend functions, Friend class

 · Array of class objects

 · Passing class objects to and returning class objects from functions

 · Nested classes, Namespaces

 · Dynamic memory allocation using new and deallocation

 new handler function

Unit-5
Teaching Hours:14
C++ Object oriented Programming
 

· Class and Objects

 · Dynamic Memory Management POP,

 · OOPs in C++

 · Console Input / Output in C++

 · Comment lines in C++

 · Importance of function prototyping in C++

 · Function overloading

 · Inline functions and default arguments

 · Scope Resolution Operator

 · Structures

 · Defining function outside the class

 · Friend functions, Friend class

 · Array of class objects

 · Passing class objects to and returning class objects from functions

 · Nested classes, Namespaces

 · Dynamic memory allocation using new and deallocation

 new handler function

Unit-5
Teaching Hours:14
C++ Object oriented Programming
 

· Class and Objects

 · Dynamic Memory Management POP,

 · OOPs in C++

 · Console Input / Output in C++

 · Comment lines in C++

 · Importance of function prototyping in C++

 · Function overloading

 · Inline functions and default arguments

 · Scope Resolution Operator

 · Structures

 · Defining function outside the class

 · Friend functions, Friend class

 · Array of class objects

 · Passing class objects to and returning class objects from functions

 · Nested classes, Namespaces

 · Dynamic memory allocation using new and deallocation

 new handler function

Unit-5
Teaching Hours:14
C++ Object oriented Programming
 

· Class and Objects

 · Dynamic Memory Management POP,

 · OOPs in C++

 · Console Input / Output in C++

 · Comment lines in C++

 · Importance of function prototyping in C++

 · Function overloading

 · Inline functions and default arguments

 · Scope Resolution Operator

 · Structures

 · Defining function outside the class

 · Friend functions, Friend class

 · Array of class objects

 · Passing class objects to and returning class objects from functions

 · Nested classes, Namespaces

 · Dynamic memory allocation using new and deallocation

 new handler function

Unit-5
Teaching Hours:14
C++ Object oriented Programming
 

· Class and Objects

 · Dynamic Memory Management POP,

 · OOPs in C++

 · Console Input / Output in C++

 · Comment lines in C++

 · Importance of function prototyping in C++

 · Function overloading

 · Inline functions and default arguments

 · Scope Resolution Operator

 · Structures

 · Defining function outside the class

 · Friend functions, Friend class

 · Array of class objects

 · Passing class objects to and returning class objects from functions

 · Nested classes, Namespaces

 · Dynamic memory allocation using new and deallocation

 new handler function

Unit-5
Teaching Hours:14
C++ Object oriented Programming
 

· Class and Objects

 · Dynamic Memory Management POP,

 · OOPs in C++

 · Console Input / Output in C++

 · Comment lines in C++

 · Importance of function prototyping in C++

 · Function overloading

 · Inline functions and default arguments

 · Scope Resolution Operator

 · Structures

 · Defining function outside the class

 · Friend functions, Friend class

 · Array of class objects

 · Passing class objects to and returning class objects from functions

 · Nested classes, Namespaces

 · Dynamic memory allocation using new and deallocation

 new handler function

Unit-5
Teaching Hours:14
C++ Object oriented Programming
 

· Class and Objects

 · Dynamic Memory Management POP,

 · OOPs in C++

 · Console Input / Output in C++

 · Comment lines in C++

 · Importance of function prototyping in C++

 · Function overloading

 · Inline functions and default arguments

 · Scope Resolution Operator

 · Structures

 · Defining function outside the class

 · Friend functions, Friend class

 · Array of class objects

 · Passing class objects to and returning class objects from functions

 · Nested classes, Namespaces

 · Dynamic memory allocation using new and deallocation

 new handler function

Unit-5
Teaching Hours:14
C++ Object oriented Programming
 

· Class and Objects

 · Dynamic Memory Management POP,

 · OOPs in C++

 · Console Input / Output in C++

 · Comment lines in C++

 · Importance of function prototyping in C++

 · Function overloading

 · Inline functions and default arguments

 · Scope Resolution Operator

 · Structures

 · Defining function outside the class

 · Friend functions, Friend class

 · Array of class objects

 · Passing class objects to and returning class objects from functions

 · Nested classes, Namespaces

 · Dynamic memory allocation using new and deallocation

 new handler function

Unit-5
Teaching Hours:14
C++ Object oriented Programming
 

· Class and Objects

 · Dynamic Memory Management POP,

 · OOPs in C++

 · Console Input / Output in C++

 · Comment lines in C++

 · Importance of function prototyping in C++

 · Function overloading

 · Inline functions and default arguments

 · Scope Resolution Operator

 · Structures

 · Defining function outside the class

 · Friend functions, Friend class

 · Array of class objects

 · Passing class objects to and returning class objects from functions

 · Nested classes, Namespaces

 · Dynamic memory allocation using new and deallocation

 new handler function

Unit-5
Teaching Hours:14
C++ Object oriented Programming
 

· Class and Objects

 · Dynamic Memory Management POP,

 · OOPs in C++

 · Console Input / Output in C++

 · Comment lines in C++

 · Importance of function prototyping in C++

 · Function overloading

 · Inline functions and default arguments

 · Scope Resolution Operator

 · Structures

 · Defining function outside the class

 · Friend functions, Friend class

 · Array of class objects

 · Passing class objects to and returning class objects from functions

 · Nested classes, Namespaces

 · Dynamic memory allocation using new and deallocation

 new handler function

Unit-5
Teaching Hours:14
C++ Object oriented Programming
 

· Class and Objects

 · Dynamic Memory Management POP,

 · OOPs in C++

 · Console Input / Output in C++

 · Comment lines in C++

 · Importance of function prototyping in C++

 · Function overloading

 · Inline functions and default arguments

 · Scope Resolution Operator

 · Structures

 · Defining function outside the class

 · Friend functions, Friend class

 · Array of class objects

 · Passing class objects to and returning class objects from functions

 · Nested classes, Namespaces

 · Dynamic memory allocation using new and deallocation

 new handler function

Unit-5
Teaching Hours:14
C++ Object oriented Programming
 

· Class and Objects

 · Dynamic Memory Management POP,

 · OOPs in C++

 · Console Input / Output in C++

 · Comment lines in C++

 · Importance of function prototyping in C++

 · Function overloading

 · Inline functions and default arguments

 · Scope Resolution Operator

 · Structures

 · Defining function outside the class

 · Friend functions, Friend class

 · Array of class objects

 · Passing class objects to and returning class objects from functions

 · Nested classes, Namespaces

 · Dynamic memory allocation using new and deallocation

 new handler function

Unit-5
Teaching Hours:14
C++ Object oriented Programming
 

· Class and Objects

 · Dynamic Memory Management POP,

 · OOPs in C++

 · Console Input / Output in C++

 · Comment lines in C++

 · Importance of function prototyping in C++

 · Function overloading

 · Inline functions and default arguments

 · Scope Resolution Operator

 · Structures

 · Defining function outside the class

 · Friend functions, Friend class

 · Array of class objects

 · Passing class objects to and returning class objects from functions

 · Nested classes, Namespaces

 · Dynamic memory allocation using new and deallocation

 new handler function

Unit-5
Teaching Hours:14
C++ Object oriented Programming
 

· Class and Objects

 · Dynamic Memory Management POP,

 · OOPs in C++

 · Console Input / Output in C++

 · Comment lines in C++

 · Importance of function prototyping in C++

 · Function overloading

 · Inline functions and default arguments

 · Scope Resolution Operator

 · Structures

 · Defining function outside the class

 · Friend functions, Friend class

 · Array of class objects

 · Passing class objects to and returning class objects from functions

 · Nested classes, Namespaces

 · Dynamic memory allocation using new and deallocation

 new handler function

Text Books And Reference Books:

1.Title: The Elements of Style

 

Author: William Strunk Jr. and E.B. White

 

Publisher: Pearson

 

Edition: 4th Edition

ISBN: 9780205309023.

2.Title: Cracking the Coding Interview

 

Author: Gayle Laakmann McDowell

 

Publisher: CareerCup

 

Edition: 6th Edition

ISBN: 9780984782857

 

Essential Reading / Recommended Reading

1.Title: The Assertiveness Workbook: How to Express Your Ideas and Stand Up for Yourself at Work and in Relationships

Author: Randy J. Paterson

Publisher: New Harbinger Publications

Edition: 1st Edition

ISBN: 9781572242098.

2.Title: Quantitative Aptitude for Competitive Examinations

    Author: R.S. Aggarwal

    Publisher: S. Chand Publishing

    Edition: 2021

    ISBN: 9789352836509

 

3. Title: How to Prepare for Quantitative Aptitude for the CAT

    Author: Arun Sharma

    Publisher: McGraw Hill Education

 

    Edition: 10th Edition (2022).

4.Title: Let Us C++

 

   Author: YashavantKanetkar

 

   Publisher: BPB Publications

 

   Edition: 2nd Edition

 

   ISBN: 9789387284904

 

 

 

   Solutions Book:

 

 4.  Title: Let Us C++ Solutions

 

   Author: YashavantKanetkar

 

   Publisher: BPB Publications

 

   Edition: 1st Edition

   ISBN: 9789387284911

 

Evaluation Pattern

Total Credits=1

Overall CIA=50 Marks.

CSOE561E01 - WEB PROGRAMMING CONCEPTS (2022 Batch)

Total Teaching Hours for Semester:45
No of Lecture Hours/Week:3
Max Marks:100
Credits:3

Course Objectives/Course Description

 

In this syllabus gets you the simple and practical Web Development for beginners covering basics of web programming, HTML5, CSS3, JavaScript and jQuery. The programs and examples trained in each chapter will help you learn all the principles and concepts very quickly and easily. It also provides elementary insights and an overview of the subject that is necessary to understand the world of web technologies.

Learning Outcome

CO1: Demonstrate the understanding of the basics of web programming concepts

CO2: Develop a web applications using HTML5 tags.

CO3: Construct a JavaScript Scripts for building interactive web applications.

CO4: Apply and Experiment with CSS3 to describe look and formatting for webpages

CO5: Analyze lightweight jquery scripts to simplify common web scripting task

Unit-1
Teaching Hours:9
INTRODUCTION TO WEB PROGRAMMING
 

Internet and WWW, Web Browsers, Web Servers, URL, HTTP

Unit-1
Teaching Hours:9
INTRODUCTION TO WEB PROGRAMMING
 

Internet and WWW, Web Browsers, Web Servers, URL, HTTP

Unit-1
Teaching Hours:9
INTRODUCTION TO WEB PROGRAMMING
 

Internet and WWW, Web Browsers, Web Servers, URL, HTTP

Unit-1
Teaching Hours:9
INTRODUCTION TO WEB PROGRAMMING
 

Internet and WWW, Web Browsers, Web Servers, URL, HTTP

Unit-2
Teaching Hours:9
HTML5
 

Presentational Elements Working with Hyperlinks, Adding Multimedia Content, Lists, Tables, Forms

Unit-2
Teaching Hours:9
HTML5
 

Presentational Elements Working with Hyperlinks, Adding Multimedia Content, Lists, Tables, Forms

Unit-2
Teaching Hours:9
HTML5
 

Presentational Elements Working with Hyperlinks, Adding Multimedia Content, Lists, Tables, Forms

Unit-2
Teaching Hours:9
HTML5
 

Presentational Elements Working with Hyperlinks, Adding Multimedia Content, Lists, Tables, Forms

Unit-3
Teaching Hours:9
JAVASCRIPT
 

JavaScript Arrays, javascript event handling

Unit-3
Teaching Hours:9
JAVASCRIPT
 

JavaScript Arrays, javascript event handling

Unit-3
Teaching Hours:9
JAVASCRIPT
 

JavaScript Arrays, javascript event handling

Unit-3
Teaching Hours:9
JAVASCRIPT
 

JavaScript Arrays, javascript event handling

Unit-4
Teaching Hours:9
CSS3
 

Introducing CSS3, Defining & Applying a style, Creating style sheets, Understanding selectors, specificity, and cascading, Working with CSS properties

Unit-4
Teaching Hours:9
CSS3
 

Introducing CSS3, Defining & Applying a style, Creating style sheets, Understanding selectors, specificity, and cascading, Working with CSS properties

Unit-4
Teaching Hours:9
CSS3
 

Introducing CSS3, Defining & Applying a style, Creating style sheets, Understanding selectors, specificity, and cascading, Working with CSS properties

Unit-4
Teaching Hours:9
CSS3
 

Introducing CSS3, Defining & Applying a style, Creating style sheets, Understanding selectors, specificity, and cascading, Working with CSS properties

Unit-5
Teaching Hours:9
jQuery
 

Introduction to jQuery Selectors, jQuery Events, jQuery DOM

Unit-5
Teaching Hours:9
Self-study
 

MySQL Database,  JSP, ASP

Unit-5
Teaching Hours:9
jQuery
 

Introduction to jQuery Selectors, jQuery Events, jQuery DOM

Unit-5
Teaching Hours:9
Self-study
 

MySQL Database,  JSP, ASP

Unit-5
Teaching Hours:9
jQuery
 

Introduction to jQuery Selectors, jQuery Events, jQuery DOM

Unit-5
Teaching Hours:9
Self-study
 

MySQL Database,  JSP, ASP

Unit-5
Teaching Hours:9
jQuery
 

Introduction to jQuery Selectors, jQuery Events, jQuery DOM

Unit-5
Teaching Hours:9
Self-study
 

MySQL Database,  JSP, ASP

Text Books And Reference Books:

T1. Training Guide Programming in HTML5 with JavaScript and CSS3 (MCSD) (Microsoft Press Training Guide), 2013

T2. Deitel and Deitel, "Internet & World Wide Web How to Program", 5th edition,Pearson Publishers,2020

T3. York, Richard,Web development with jQuery,Wiley India Pvt Ltd., 2nd edition,2015.

Essential Reading / Recommended Reading

R1. Matt West, “HTML5 Foundations”, Wiley Publishers: 2013.

R2. Bruce Lawson, Remy Sharp, “Introducing HTML 5”, Pearson 2011

R3. Ian Lunn, “CSS3 Foundations”,Wiley Publishers, 2012

R4.Jon Duckett, “JavaScript and JQuery: Interactive Front-End Web Development”, Wiley Publishers: 2014.

Evaluation Pattern
    • CIA 1 – 20 Marks

    • CIA 2 – 50 Marks

    • CIA 3 – 20 Marks

    • End Semester Examination – 100 Marks

    • Attendance – 5 Marks

 

(Scaled: CIA – 50 Marks & ESE – 50 Marks)

CSOE561E04 - PYTHON FOR ENGINEERS (2022 Batch)

Total Teaching Hours for Semester:45
No of Lecture Hours/Week:3
Max Marks:100
Credits:3

Course Objectives/Course Description

 

Course Description:

Python is an advanced, interpreted programming language known for its readability and simplicity. It supports various programming paradigms, such as procedural, object-oriented, and functional. Python's wide range of applications, from web development and app creation to data analytics and artificial intelligence, underscore its usefulness. Its robust assortment of libraries and frameworks contributes to its popularity among novices and professionals.

 

Course Objective:

• Develop a working knowledge for how computers operate & how computer programs are executed.

• Evolve critical thinking and problem-solving skills using an algorithmic approach.

• Learn about the programmer’s role in the software development process.

• Translate real-world issues into computer-solvable problems.

Learning Outcome

CO1: Demonstrate the basic methods of formatting, outputting data, kinds of data, operators and variables.(L2)

CO2: Interpret with the concepts of Boolean values, utilization of loops and operators. (L2)

CO3: Experiment with functions, passing arguments and data processing.(L3)

CO4: Illustrate the concept of modules, exceptions, strings and lists. (L2)

CO5: Apply the concepts of python to explore domain based applications.(L3)

Unit-1
Teaching Hours:9
INTRODUCTION TO PYTHON
 

Programming – absolute basics, Python –Literal constants, Operators and Expressions, Variables, Identifiers, Data types, Input operation, Type conversion, Reserved words, Indentation, Comments, Testing and debugging a python code.

Unit-1
Teaching Hours:9
INTRODUCTION TO PYTHON
 

Programming – absolute basics, Python –Literal constants, Operators and Expressions, Variables, Identifiers, Data types, Input operation, Type conversion, Reserved words, Indentation, Comments, Testing and debugging a python code.

Unit-1
Teaching Hours:9
INTRODUCTION TO PYTHON
 

Programming – absolute basics, Python –Literal constants, Operators and Expressions, Variables, Identifiers, Data types, Input operation, Type conversion, Reserved words, Indentation, Comments, Testing and debugging a python code.

Unit-2
Teaching Hours:9
CONDITIONAL STATEMENTS LOOPING AND ARRAY
 

Making decisions in Python, Python's loops, Lists – collections of data, Sorting simple lists, Nested Lists, Cloning Lists, Using Lists as stacks and queues, List comprehensions, Functional programming using Lists, Advanced applications

Unit-2
Teaching Hours:9
CONDITIONAL STATEMENTS LOOPING AND ARRAY
 

Making decisions in Python, Python's loops, Lists – collections of data, Sorting simple lists, Nested Lists, Cloning Lists, Using Lists as stacks and queues, List comprehensions, Functional programming using Lists, Advanced applications

Unit-2
Teaching Hours:9
CONDITIONAL STATEMENTS LOOPING AND ARRAY
 

Making decisions in Python, Python's loops, Lists – collections of data, Sorting simple lists, Nested Lists, Cloning Lists, Using Lists as stacks and queues, List comprehensions, Functional programming using Lists, Advanced applications

Unit-3
Teaching Hours:9
FUNCTIONS
 

Writing functions, How functions communicate with environment, Variable scope and their lifetime, Keyword arguments, Default arguments, Variable length arguments, Lambda functions, Recursive functions, Tuples & dictionaries.

Unit-3
Teaching Hours:9
FUNCTIONS
 

Writing functions, How functions communicate with environment, Variable scope and their lifetime, Keyword arguments, Default arguments, Variable length arguments, Lambda functions, Recursive functions, Tuples & dictionaries.

Unit-3
Teaching Hours:9
FUNCTIONS
 

Writing functions, How functions communicate with environment, Variable scope and their lifetime, Keyword arguments, Default arguments, Variable length arguments, Lambda functions, Recursive functions, Tuples & dictionaries.

Unit-4
Teaching Hours:9
ERRORS & EXCEPTIONS
 

Handling exceptions, Raising exceptions, Built-in and User-defined exceptions, The finally block, Assertions in python, Characters and strings, String methods, Basic concepts of object oriented programming, Generators and closures

Unit-4
Teaching Hours:9
ERRORS & EXCEPTIONS
 

Handling exceptions, Raising exceptions, Built-in and User-defined exceptions, The finally block, Assertions in python, Characters and strings, String methods, Basic concepts of object oriented programming, Generators and closures

Unit-4
Teaching Hours:9
ERRORS & EXCEPTIONS
 

Handling exceptions, Raising exceptions, Built-in and User-defined exceptions, The finally block, Assertions in python, Characters and strings, String methods, Basic concepts of object oriented programming, Generators and closures

Unit-5
Teaching Hours:9
DOMAIN BASED APPLICATIONS
 

Scientific & Numerical applications, Network programming, Embedded applications, Audio & Video applications, Computer aided designing applications, Writing automated tests ,System administration, Games & Graphics

Unit-5
Teaching Hours:9
DOMAIN BASED APPLICATIONS
 

Scientific & Numerical applications, Network programming, Embedded applications, Audio & Video applications, Computer aided designing applications, Writing automated tests ,System administration, Games & Graphics

Unit-5
Teaching Hours:9
DOMAIN BASED APPLICATIONS
 

Scientific & Numerical applications, Network programming, Embedded applications, Audio & Video applications, Computer aided designing applications, Writing automated tests ,System administration, Games & Graphics

Text Books And Reference Books:

TEXT BOOKS

T1. Eric Matthes, “Python Crash Course”, 2nd Edition: A Hands-On, Project-Based Introduction to Programming, No Starch Press, Inc, 2016.

T2. Paul Barry, “Head first Python”, 2nd Edition, O’Reilly, 2017.

 

 

Essential Reading / Recommended Reading

REFERENCE BOOKS

R1. John Zelle, “Python Programming”, 3rd Edition, Franklin - Beedle Pub, 2017. 

R2. Martin C. Brown, “Python:The Complete Reference”,McGraw Hill Education;Fourth edition,2018.

R3. Allen Downey, “Learning with Python: How to Think Like a Computer Scientist”, 3rd Edition, Green Tea Press, 2019.

Evaluation Pattern

CIA 1 – 20 Marks

CIA 2 – 50 Marks

CIA 3 – 20 Marks

End Semester Examination – 100 Marks

Attendance – 5 Marks

(Scaled: CIA – 50 Marks & ESE – 50 Marks)

ECHO541CSP24 - COMPUTING SYSTEM SECURITY (2022 Batch)

Total Teaching Hours for Semester:75
No of Lecture Hours/Week:5
Max Marks:100
Credits:4

Course Objectives/Course Description

 

To understand the scope and importance of computing systems security towards developing a conscious community for computer security issues, both at global and local scale.  

Learning Outcome

CO1: Discover software bugs that pose cyber security threats and to explain how to fix the bugs to mitigate such threats

CO2: Discover cyber attack scenarios to web browsers and web servers and to explain how to mitigate such threats

CO3: Explain mobile software bugs posing cyber security threats, explain and recreate exploits, and to explain mitigation techniques

CO4: Summarize the various concepts of Access Control and isolation

CO5: Relate the issues in critical infrastructure and SCADA Security

Unit-1
Teaching Hours:9
Software and System Security
 

Sample Attacks, The Marketplace for vulnerabilities, Hijacking & Defense: Control Hijacking, More Control Hijacking attacks integer overflow, More Control Hijacking attacks format string vulnerabilities, Defense against Control Hijacking-Platform Defenses, Defense against Control Hijacking-Run-time Defenses, Advanced Control Hijacking attacks.

Unit-1
Teaching Hours:9
Software and System Security
 

Sample Attacks, The Marketplace for vulnerabilities, Hijacking & Defense: Control Hijacking, More Control Hijacking attacks integer overflow, More Control Hijacking attacks format string vulnerabilities, Defense against Control Hijacking-Platform Defenses, Defense against Control Hijacking-Run-time Defenses, Advanced Control Hijacking attacks.

Unit-1
Teaching Hours:9
Software and System Security
 

Sample Attacks, The Marketplace for vulnerabilities, Hijacking & Defense: Control Hijacking, More Control Hijacking attacks integer overflow, More Control Hijacking attacks format string vulnerabilities, Defense against Control Hijacking-Platform Defenses, Defense against Control Hijacking-Run-time Defenses, Advanced Control Hijacking attacks.

Unit-2
Teaching Hours:9
Network Security & Web Security
 

Confidentiality Policies, Confinement Principle, Detour Unix user IDs process IDs and privileges, More on confinement techniques, System call interposition, Error 404 digital Hacking.

Unit-2
Teaching Hours:9
Network Security & Web Security
 

Confidentiality Policies, Confinement Principle, Detour Unix user IDs process IDs and privileges, More on confinement techniques, System call interposition, Error 404 digital Hacking.

Unit-2
Teaching Hours:9
Network Security & Web Security
 

Confidentiality Policies, Confinement Principle, Detour Unix user IDs process IDs and privileges, More on confinement techniques, System call interposition, Error 404 digital Hacking.

Unit-3
Teaching Hours:9
Security in Mobile Platforms
 

Access Control Concepts, Unix and windows access control summary, Introduction to browser isolation, Web security definitions goals and threat models, HTTP content rendering, Major web server threats, Cross site request forgery, Cross site scripting, Defenses and protections against XSS, Secure development.

Unit-3
Teaching Hours:9
Security in Mobile Platforms
 

Access Control Concepts, Unix and windows access control summary, Introduction to browser isolation, Web security definitions goals and threat models, HTTP content rendering, Major web server threats, Cross site request forgery, Cross site scripting, Defenses and protections against XSS, Secure development.

Unit-3
Teaching Hours:9
Security in Mobile Platforms
 

Access Control Concepts, Unix and windows access control summary, Introduction to browser isolation, Web security definitions goals and threat models, HTTP content rendering, Major web server threats, Cross site request forgery, Cross site scripting, Defenses and protections against XSS, Secure development.

Unit-4
Teaching Hours:9
Access Control and Isolation concepts
 

Secure architecture principles isolation and leas, Access Control Concepts, Other issues in access control, Software fault isolation, Rootkits, VM based isolation, ROT13 algorithm

Unit-4
Teaching Hours:9
Access Control and Isolation concepts
 

Secure architecture principles isolation and leas, Access Control Concepts, Other issues in access control, Software fault isolation, Rootkits, VM based isolation, ROT13 algorithm

Unit-4
Teaching Hours:9
Access Control and Isolation concepts
 

Secure architecture principles isolation and leas, Access Control Concepts, Other issues in access control, Software fault isolation, Rootkits, VM based isolation, ROT13 algorithm

Unit-5
Teaching Hours:9
Issues in Critical Infrastructure and SCADA Security
 

Security issues in SCADA, IP Convergence Cyber Physical System Security threats, Threat models in SCADA and various protection approaches, Machine learning and SCADA Security

Unit-5
Teaching Hours:9
Issues in Critical Infrastructure and SCADA Security
 

Security issues in SCADA, IP Convergence Cyber Physical System Security threats, Threat models in SCADA and various protection approaches, Machine learning and SCADA Security

Unit-5
Teaching Hours:9
Issues in Critical Infrastructure and SCADA Security
 

Security issues in SCADA, IP Convergence Cyber Physical System Security threats, Threat models in SCADA and various protection approaches, Machine learning and SCADA Security

Text Books And Reference Books:

 

1. William Stallings, Lawrie Brown, "Computer Security: Principles and Practice, Pearson; 4 edition, Global Edition, 2018.

 

2. Michael T. Goodrich and Roberto Tamassia, Introduction to Computer Security: Pearson New International Edition, 2013.

 

REFERENCE BOOKS:

 

1. Alfred J. Menezes, Paul C. van Oorschot and Scott A. Vanstone, Handbook of Applied Cryptography, CRC Press, 2001

 

2. William Stallings, Network Security Essentials: Applications and Standards, Pearson, 6th edition, 2017.

Essential Reading / Recommended Reading

 

1. William Stallings, Lawrie Brown, "Computer Security: Principles and Practice, Pearson; 4 edition, Global Edition, 2018.

 

2. Michael T. Goodrich and Roberto Tamassia, Introduction to Computer Security: Pearson New International Edition, 2013.

 

REFERENCE BOOKS:

 

1. Alfred J. Menezes, Paul C. van Oorschot and Scott A. Vanstone, Handbook of Applied Cryptography, CRC Press, 2001

 

2. William Stallings, Network Security Essentials: Applications and Standards, Pearson, 6th edition, 2017.

Evaluation Pattern

CIA I-20 MARKS

CIA II-50 MARKS

CIA III-20 MARKS

ATTENDANCE-5 MARKS

PRACTICAL -50 MARKS

END SEMESTER EXAMINATION -100 MARKS

SCALED[ CIA(THEORY+PRACTICAL) -70 MARKS & ESE -30 MARKS]

ECHO542CS24 - CRYPTOGRAPHY AND SECURITY IMPLEMENTATION (2022 Batch)

Total Teaching Hours for Semester:45
No of Lecture Hours/Week:3
Max Marks:100
Credits:3

Course Objectives/Course Description

 

The objective of this course is to learn various encryption and decryption standars and algorithms and understand about various security protocols implemented at the socket and transport levels and also learn about firewall design principles.

Learning Outcome

CO1: Explain the basic requirements of a Security Architecture and the common security attacks

CO2: Understand the difference between Block ciphers and Stream ciphers and get to know their history

CO3: Describe about Private key cryptography and the mechanisms available to implement it.

CO4: Describe about Public key cryptography and the widely used techniques to realize it.

CO5: Understand about security protocols implemented at the socket and transport layer. Also about the firewall design principles

Unit-1
Teaching Hours:9
NETWORK SECURITY
 

Security Trends-The OSI Security Architecture, Security Attacks, Security Services and Security Mechanisms, A model for Network Security-Classical Encryption Techniques. 

Unit-1
Teaching Hours:9
NETWORK SECURITY
 

Security Trends-The OSI Security Architecture, Security Attacks, Security Services and Security Mechanisms, A model for Network Security-Classical Encryption Techniques. 

Unit-1
Teaching Hours:9
NETWORK SECURITY
 

Security Trends-The OSI Security Architecture, Security Attacks, Security Services and Security Mechanisms, A model for Network Security-Classical Encryption Techniques. 

Unit-2
Teaching Hours:9
BLOCK CIPHERS
 

Number Theory- Modern Block Ciphers: DES, 3DES, AES, Blowfish, CAST-128 - Stream Cipher - Public Key Cryptography: RSA, Diffie-Hellman, Elgamal, ECC. 

Unit-2
Teaching Hours:9
BLOCK CIPHERS
 

Number Theory- Modern Block Ciphers: DES, 3DES, AES, Blowfish, CAST-128 - Stream Cipher - Public Key Cryptography: RSA, Diffie-Hellman, Elgamal, ECC. 

Unit-2
Teaching Hours:9
BLOCK CIPHERS
 

Number Theory- Modern Block Ciphers: DES, 3DES, AES, Blowfish, CAST-128 - Stream Cipher - Public Key Cryptography: RSA, Diffie-Hellman, Elgamal, ECC. 

Unit-3
Teaching Hours:9
PRIVATE KEY CRYPTOGRAPHY
 

MD5 message digest algorithm - Secure hash algorithm (SHA) Digital Signatures: Digital Signatures - authentication protocols - digital signature standards (DSS) - proof of digital signature algorithm - Authentication Applications: Kerberos and X.509 - directory authentication service - electronic mail security-pretty good privacy (PGP) - S/MIME. 

Unit-3
Teaching Hours:9
PRIVATE KEY CRYPTOGRAPHY
 

MD5 message digest algorithm - Secure hash algorithm (SHA) Digital Signatures: Digital Signatures - authentication protocols - digital signature standards (DSS) - proof of digital signature algorithm - Authentication Applications: Kerberos and X.509 - directory authentication service - electronic mail security-pretty good privacy (PGP) - S/MIME. 

Unit-3
Teaching Hours:9
PRIVATE KEY CRYPTOGRAPHY
 

MD5 message digest algorithm - Secure hash algorithm (SHA) Digital Signatures: Digital Signatures - authentication protocols - digital signature standards (DSS) - proof of digital signature algorithm - Authentication Applications: Kerberos and X.509 - directory authentication service - electronic mail security-pretty good privacy (PGP) - S/MIME. 

Unit-4
Teaching Hours:9
PUBLIC KEY CRYPTOGRAPHY
 

Pretty Good Privacy (PGP) and S/MIME. IP SECURITY: Overview, IP Security Architecture, Authentication Header, Encapsulating Security Payload, Combining Security Associations and Key Management. 

Unit-4
Teaching Hours:9
PUBLIC KEY CRYPTOGRAPHY
 

Pretty Good Privacy (PGP) and S/MIME. IP SECURITY: Overview, IP Security Architecture, Authentication Header, Encapsulating Security Payload, Combining Security Associations and Key Management. 

Unit-4
Teaching Hours:9
PUBLIC KEY CRYPTOGRAPHY
 

Pretty Good Privacy (PGP) and S/MIME. IP SECURITY: Overview, IP Security Architecture, Authentication Header, Encapsulating Security Payload, Combining Security Associations and Key Management. 

Unit-5
Teaching Hours:9
SECURITY PROTOCOLS
 

Web Security: Secure socket layer and transport layer security - secure electronic transaction - System Security: Intruders - Viruses and related threads - firewall design principals – trusted systems.

Unit-5
Teaching Hours:9
SECURITY PROTOCOLS
 

Web Security: Secure socket layer and transport layer security - secure electronic transaction - System Security: Intruders - Viruses and related threads - firewall design principals – trusted systems.

Unit-5
Teaching Hours:9
SECURITY PROTOCOLS
 

Web Security: Secure socket layer and transport layer security - secure electronic transaction - System Security: Intruders - Viruses and related threads - firewall design principals – trusted systems.

Text Books And Reference Books:

1.     Behrouz A. Forouzan and D. Mukhopadhyay, Cryptography & Network Security, McGraw Hill, New Delhi.

2.     William Stallings, Cryptography and Network Security: Principles and Practice, Prentice-Hall REFERENCE BOOKS

Essential Reading / Recommended Reading

1.     Douglas R. Stinson, Cryptography: Theory and Practice, Chapman and Hall

2.     J. Katz and Y. Lindell, Introduction to Modern Cryptography, CRC press

Evaluation Pattern

CIA I-20 MARKS

CIA II-50 MARKS

CIA III-20 MARKS

ATTENDANCE-5 MARKS

PRACTICAL -50 MARKS

END SEMESTER EXAMINATION -100 MARKS

SCALED[ CIA(THEORY) -50 MARKS & ESE -50 MARKS]

EEOE561E01 - HYBRID ELECTRIC VEHICLES (2022 Batch)

Total Teaching Hours for Semester:45
No of Lecture Hours/Week:4
Max Marks:100
Credits:3

Course Objectives/Course Description

 

This course introduces the fundamental concepts, principles, analysis and design of hybrid and electric vehicles.

Learning Outcome

CO1: Understand the concepts of hybrid and electric drive configuration.

CO2: Analyze the operation of Series, Parallel and Series-Parallel Drivetrain configurations.

CO3: Inspect the operation of Electrical Drives used in Automotive applications.

CO4: Identify the Electric & Hybrid Electric Vehicle subsystems and its integration.

CO5: Model Energy Management strategies used in Hybrid, Electric and Conventional Vehicles.

Unit-1
Teaching Hours:9
HYBRID VEHICLES
 

History and importance of hybrid and electric vehicles, impact of modern drive-trains on energy supplies. Basics of vehicle performance, vehicle power sources, transmission characteristics, and mathematical models to describe vehicle performance.

Unit-1
Teaching Hours:9
HYBRID VEHICLES
 

History and importance of hybrid and electric vehicles, impact of modern drive-trains on energy supplies. Basics of vehicle performance, vehicle power sources, transmission characteristics, and mathematical models to describe vehicle performance.

Unit-1
Teaching Hours:9
HYBRID VEHICLES
 

History and importance of hybrid and electric vehicles, impact of modern drive-trains on energy supplies. Basics of vehicle performance, vehicle power sources, transmission characteristics, and mathematical models to describe vehicle performance.

Unit-1
Teaching Hours:9
HYBRID VEHICLES
 

History and importance of hybrid and electric vehicles, impact of modern drive-trains on energy supplies. Basics of vehicle performance, vehicle power sources, transmission characteristics, and mathematical models to describe vehicle performance.

Unit-1
Teaching Hours:9
HYBRID VEHICLES
 

History and importance of hybrid and electric vehicles, impact of modern drive-trains on energy supplies. Basics of vehicle performance, vehicle power sources, transmission characteristics, and mathematical models to describe vehicle performance.

Unit-1
Teaching Hours:9
HYBRID VEHICLES
 

History and importance of hybrid and electric vehicles, impact of modern drive-trains on energy supplies. Basics of vehicle performance, vehicle power sources, transmission characteristics, and mathematical models to describe vehicle performance.

Unit-1
Teaching Hours:9
HYBRID VEHICLES
 

History and importance of hybrid and electric vehicles, impact of modern drive-trains on energy supplies. Basics of vehicle performance, vehicle power sources, transmission characteristics, and mathematical models to describe vehicle performance.

Unit-1
Teaching Hours:9
HYBRID VEHICLES
 

History and importance of hybrid and electric vehicles, impact of modern drive-trains on energy supplies. Basics of vehicle performance, vehicle power sources, transmission characteristics, and mathematical models to describe vehicle performance.

Unit-2
Teaching Hours:9
HYBRID TRACTION
 

Basic concept of hybrid traction, introduction to various hybrid drive-train topologies, power flow control in hybrid drive-train topologies, fuel efficiency analysis. Basic concepts of electric traction, introduction to various electric drive-train topologies, power flow control in hybrid drive-train topologies, fuel efficiency analysis.

Unit-2
Teaching Hours:9
HYBRID TRACTION
 

Basic concept of hybrid traction, introduction to various hybrid drive-train topologies, power flow control in hybrid drive-train topologies, fuel efficiency analysis. Basic concepts of electric traction, introduction to various electric drive-train topologies, power flow control in hybrid drive-train topologies, fuel efficiency analysis.

Unit-2
Teaching Hours:9
HYBRID TRACTION
 

Basic concept of hybrid traction, introduction to various hybrid drive-train topologies, power flow control in hybrid drive-train topologies, fuel efficiency analysis. Basic concepts of electric traction, introduction to various electric drive-train topologies, power flow control in hybrid drive-train topologies, fuel efficiency analysis.

Unit-2
Teaching Hours:9
HYBRID TRACTION
 

Basic concept of hybrid traction, introduction to various hybrid drive-train topologies, power flow control in hybrid drive-train topologies, fuel efficiency analysis. Basic concepts of electric traction, introduction to various electric drive-train topologies, power flow control in hybrid drive-train topologies, fuel efficiency analysis.

Unit-2
Teaching Hours:9
HYBRID TRACTION
 

Basic concept of hybrid traction, introduction to various hybrid drive-train topologies, power flow control in hybrid drive-train topologies, fuel efficiency analysis. Basic concepts of electric traction, introduction to various electric drive-train topologies, power flow control in hybrid drive-train topologies, fuel efficiency analysis.

Unit-2
Teaching Hours:9
HYBRID TRACTION
 

Basic concept of hybrid traction, introduction to various hybrid drive-train topologies, power flow control in hybrid drive-train topologies, fuel efficiency analysis. Basic concepts of electric traction, introduction to various electric drive-train topologies, power flow control in hybrid drive-train topologies, fuel efficiency analysis.

Unit-2
Teaching Hours:9
HYBRID TRACTION
 

Basic concept of hybrid traction, introduction to various hybrid drive-train topologies, power flow control in hybrid drive-train topologies, fuel efficiency analysis. Basic concepts of electric traction, introduction to various electric drive-train topologies, power flow control in hybrid drive-train topologies, fuel efficiency analysis.

Unit-2
Teaching Hours:9
HYBRID TRACTION
 

Basic concept of hybrid traction, introduction to various hybrid drive-train topologies, power flow control in hybrid drive-train topologies, fuel efficiency analysis. Basic concepts of electric traction, introduction to various electric drive-train topologies, power flow control in hybrid drive-train topologies, fuel efficiency analysis.

Unit-3
Teaching Hours:9
MOTORS AND DRIVES
 

Introduction to electric components used in hybrid and electric vehicles, configuration and control of DC Motor drives, Configuration and control of Induction Motor drives, configuration and control of Permanent Magnet Motor drives, Configuration and control of Switch Reluctance Motor drives, drive system efficiency.

Unit-3
Teaching Hours:9
MOTORS AND DRIVES
 

Introduction to electric components used in hybrid and electric vehicles, configuration and control of DC Motor drives, Configuration and control of Induction Motor drives, configuration and control of Permanent Magnet Motor drives, Configuration and control of Switch Reluctance Motor drives, drive system efficiency.

Unit-3
Teaching Hours:9
MOTORS AND DRIVES
 

Introduction to electric components used in hybrid and electric vehicles, configuration and control of DC Motor drives, Configuration and control of Induction Motor drives, configuration and control of Permanent Magnet Motor drives, Configuration and control of Switch Reluctance Motor drives, drive system efficiency.

Unit-3
Teaching Hours:9
MOTORS AND DRIVES
 

Introduction to electric components used in hybrid and electric vehicles, configuration and control of DC Motor drives, Configuration and control of Induction Motor drives, configuration and control of Permanent Magnet Motor drives, Configuration and control of Switch Reluctance Motor drives, drive system efficiency.

Unit-3
Teaching Hours:9
MOTORS AND DRIVES
 

Introduction to electric components used in hybrid and electric vehicles, configuration and control of DC Motor drives, Configuration and control of Induction Motor drives, configuration and control of Permanent Magnet Motor drives, Configuration and control of Switch Reluctance Motor drives, drive system efficiency.

Unit-3
Teaching Hours:9
MOTORS AND DRIVES
 

Introduction to electric components used in hybrid and electric vehicles, configuration and control of DC Motor drives, Configuration and control of Induction Motor drives, configuration and control of Permanent Magnet Motor drives, Configuration and control of Switch Reluctance Motor drives, drive system efficiency.

Unit-3
Teaching Hours:9
MOTORS AND DRIVES
 

Introduction to electric components used in hybrid and electric vehicles, configuration and control of DC Motor drives, Configuration and control of Induction Motor drives, configuration and control of Permanent Magnet Motor drives, Configuration and control of Switch Reluctance Motor drives, drive system efficiency.

Unit-3
Teaching Hours:9
MOTORS AND DRIVES
 

Introduction to electric components used in hybrid and electric vehicles, configuration and control of DC Motor drives, Configuration and control of Induction Motor drives, configuration and control of Permanent Magnet Motor drives, Configuration and control of Switch Reluctance Motor drives, drive system efficiency.

Unit-4
Teaching Hours:9
INTEGRATION OF SUBSYSTEMS
 

Matching the electric machine and the internal combustion engine (ICE), Sizing the propulsion motor, sizing the power electronics, selecting the energy storage technology, Communications, supporting subsystems

Unit-4
Teaching Hours:9
INTEGRATION OF SUBSYSTEMS
 

Matching the electric machine and the internal combustion engine (ICE), Sizing the propulsion motor, sizing the power electronics, selecting the energy storage technology, Communications, supporting subsystems

Unit-4
Teaching Hours:9
INTEGRATION OF SUBSYSTEMS
 

Matching the electric machine and the internal combustion engine (ICE), Sizing the propulsion motor, sizing the power electronics, selecting the energy storage technology, Communications, supporting subsystems

Unit-4
Teaching Hours:9
INTEGRATION OF SUBSYSTEMS
 

Matching the electric machine and the internal combustion engine (ICE), Sizing the propulsion motor, sizing the power electronics, selecting the energy storage technology, Communications, supporting subsystems

Unit-4
Teaching Hours:9
INTEGRATION OF SUBSYSTEMS
 

Matching the electric machine and the internal combustion engine (ICE), Sizing the propulsion motor, sizing the power electronics, selecting the energy storage technology, Communications, supporting subsystems

Unit-4
Teaching Hours:9
INTEGRATION OF SUBSYSTEMS
 

Matching the electric machine and the internal combustion engine (ICE), Sizing the propulsion motor, sizing the power electronics, selecting the energy storage technology, Communications, supporting subsystems

Unit-4
Teaching Hours:9
INTEGRATION OF SUBSYSTEMS
 

Matching the electric machine and the internal combustion engine (ICE), Sizing the propulsion motor, sizing the power electronics, selecting the energy storage technology, Communications, supporting subsystems

Unit-4
Teaching Hours:9
INTEGRATION OF SUBSYSTEMS
 

Matching the electric machine and the internal combustion engine (ICE), Sizing the propulsion motor, sizing the power electronics, selecting the energy storage technology, Communications, supporting subsystems

Unit-5
Teaching Hours:9
ENERGY MANAGEMENT STRATEGIES
 

Introduction to energy management strategies used in hybrid and electric vehicle, classification of different energy management strategies, comparison of different energy management strategies, implementation issues of energy strategies.

Unit-5
Teaching Hours:9
ENERGY MANAGEMENT STRATEGIES
 

Introduction to energy management strategies used in hybrid and electric vehicle, classification of different energy management strategies, comparison of different energy management strategies, implementation issues of energy strategies.

Unit-5
Teaching Hours:9
ENERGY MANAGEMENT STRATEGIES
 

Introduction to energy management strategies used in hybrid and electric vehicle, classification of different energy management strategies, comparison of different energy management strategies, implementation issues of energy strategies.

Unit-5
Teaching Hours:9
ENERGY MANAGEMENT STRATEGIES
 

Introduction to energy management strategies used in hybrid and electric vehicle, classification of different energy management strategies, comparison of different energy management strategies, implementation issues of energy strategies.

Unit-5
Teaching Hours:9
ENERGY MANAGEMENT STRATEGIES
 

Introduction to energy management strategies used in hybrid and electric vehicle, classification of different energy management strategies, comparison of different energy management strategies, implementation issues of energy strategies.

Unit-5
Teaching Hours:9
ENERGY MANAGEMENT STRATEGIES
 

Introduction to energy management strategies used in hybrid and electric vehicle, classification of different energy management strategies, comparison of different energy management strategies, implementation issues of energy strategies.

Unit-5
Teaching Hours:9
ENERGY MANAGEMENT STRATEGIES
 

Introduction to energy management strategies used in hybrid and electric vehicle, classification of different energy management strategies, comparison of different energy management strategies, implementation issues of energy strategies.

Unit-5
Teaching Hours:9
ENERGY MANAGEMENT STRATEGIES
 

Introduction to energy management strategies used in hybrid and electric vehicle, classification of different energy management strategies, comparison of different energy management strategies, implementation issues of energy strategies.

Text Books And Reference Books:

1.      BimalK. Bose, ‘Power Electronics and Motor drives’ , Elsevier, 2011

2.      IqbalHussain, ‘Electric and Hybrid Vehicles: Design Fundamentals’, 2nd edition, CRC Pr I Llc, 2010

Essential Reading / Recommended Reading

1.      Sira -Ramirez, R. Silva Ortigoza, ‘Control Design Techniques in Power Electronics Devices’, Springer, 2006

2.      Siew-Chong Tan, Yuk-Ming Lai, Chi Kong Tse, ‘Sliding mode control of switching Power Converters’, CRC Press, 2011

3.      Ion Boldea and S.A Nasar, ‘Electric drives’, CRC Press, 2005

Evaluation Pattern

Course Outcomes

Components of assessment (marks)

 CIA I

CIA II

CIA III

ESE

CO1: Understand the concepts of hybrid and electric drive configuration.

10

20

 

20

CO2: Analyze the operation of Series, Parallel and Series-Parallel Drivetrain configurations.

10

20

 

20

CO3: Inspect the operation of Electrical Drives used in Automotive applications.

 

10

 

20

CO4:  Identfiy the Electric & Hybrid Electric Vehicle subsystems and its integration.

 

 

10

20

CO5: Model Energy Management strategies used in Hybrid, Electric and Conventional Vehicles.

 

 

10

20

EEOE561E02 - ROBOTICS AND AUTOMATION (2022 Batch)

Total Teaching Hours for Semester:60
No of Lecture Hours/Week:4
Max Marks:100
Credits:3

Course Objectives/Course Description

 

·         To understand concepts in kinematics and dynamics of robotic system.

·         To introduce control strategies of simple robotic system.

·         To study the applications of computer based control to integrated automation systems.

Learning Outcome

CO 1: To understand the basic concepts in robotics.

CO 2: To describe basic elements in a robotic system

CO 3: To understand the kinematics, dynamics and programming with respect to a robotic system.

CO 4: To understand the control system design for a robotic system

CO 5: To discuss some of the robotic applications

Unit-1
Teaching Hours:12
Introduction
 

Robot definitions - Laws of robotics - Robot anatomy - History - Human systems and Robotics - Specifications of Robots - Flexible automation versus Robotic technology - Classification applications

Unit-1
Teaching Hours:12
Introduction
 

Robot definitions - Laws of robotics - Robot anatomy - History - Human systems and Robotics - Specifications of Robots - Flexible automation versus Robotic technology - Classification applications

Unit-1
Teaching Hours:12
Introduction
 

Robot definitions - Laws of robotics - Robot anatomy - History - Human systems and Robotics - Specifications of Robots - Flexible automation versus Robotic technology - Classification applications

Unit-1
Teaching Hours:12
Introduction
 

Robot definitions - Laws of robotics - Robot anatomy - History - Human systems and Robotics - Specifications of Robots - Flexible automation versus Robotic technology - Classification applications

Unit-1
Teaching Hours:12
Introduction
 

Robot definitions - Laws of robotics - Robot anatomy - History - Human systems and Robotics - Specifications of Robots - Flexible automation versus Robotic technology - Classification applications

Unit-1
Teaching Hours:12
Introduction
 

Robot definitions - Laws of robotics - Robot anatomy - History - Human systems and Robotics - Specifications of Robots - Flexible automation versus Robotic technology - Classification applications

Unit-1
Teaching Hours:12
Introduction
 

Robot definitions - Laws of robotics - Robot anatomy - History - Human systems and Robotics - Specifications of Robots - Flexible automation versus Robotic technology - Classification applications

Unit-1
Teaching Hours:12
Introduction
 

Robot definitions - Laws of robotics - Robot anatomy - History - Human systems and Robotics - Specifications of Robots - Flexible automation versus Robotic technology - Classification applications

Unit-2
Teaching Hours:12
Robotic systems
 

Basic structure of a robot – Robot end effectors - Manipulators - Classification of robots – Accuracy - Resolution and repeatability of a robot - Drives and control systems – Mechanical components of robots – Sensors and vision systems - Transducers and sensors - Tactile sensors – Proximity sensors and range sensors - Vision systems - RTOS - PLCs - Power electronics

Unit-2
Teaching Hours:12
Robotic systems
 

Basic structure of a robot – Robot end effectors - Manipulators - Classification of robots – Accuracy - Resolution and repeatability of a robot - Drives and control systems – Mechanical components of robots – Sensors and vision systems - Transducers and sensors - Tactile sensors – Proximity sensors and range sensors - Vision systems - RTOS - PLCs - Power electronics

Unit-2
Teaching Hours:12
Robotic systems
 

Basic structure of a robot – Robot end effectors - Manipulators - Classification of robots – Accuracy - Resolution and repeatability of a robot - Drives and control systems – Mechanical components of robots – Sensors and vision systems - Transducers and sensors - Tactile sensors – Proximity sensors and range sensors - Vision systems - RTOS - PLCs - Power electronics

Unit-2
Teaching Hours:12
Robotic systems
 

Basic structure of a robot – Robot end effectors - Manipulators - Classification of robots – Accuracy - Resolution and repeatability of a robot - Drives and control systems – Mechanical components of robots – Sensors and vision systems - Transducers and sensors - Tactile sensors – Proximity sensors and range sensors - Vision systems - RTOS - PLCs - Power electronics

Unit-2
Teaching Hours:12
Robotic systems
 

Basic structure of a robot – Robot end effectors - Manipulators - Classification of robots – Accuracy - Resolution and repeatability of a robot - Drives and control systems – Mechanical components of robots – Sensors and vision systems - Transducers and sensors - Tactile sensors – Proximity sensors and range sensors - Vision systems - RTOS - PLCs - Power electronics

Unit-2
Teaching Hours:12
Robotic systems
 

Basic structure of a robot – Robot end effectors - Manipulators - Classification of robots – Accuracy - Resolution and repeatability of a robot - Drives and control systems – Mechanical components of robots – Sensors and vision systems - Transducers and sensors - Tactile sensors – Proximity sensors and range sensors - Vision systems - RTOS - PLCs - Power electronics

Unit-2
Teaching Hours:12
Robotic systems
 

Basic structure of a robot – Robot end effectors - Manipulators - Classification of robots – Accuracy - Resolution and repeatability of a robot - Drives and control systems – Mechanical components of robots – Sensors and vision systems - Transducers and sensors - Tactile sensors – Proximity sensors and range sensors - Vision systems - RTOS - PLCs - Power electronics

Unit-2
Teaching Hours:12
Robotic systems
 

Basic structure of a robot – Robot end effectors - Manipulators - Classification of robots – Accuracy - Resolution and repeatability of a robot - Drives and control systems – Mechanical components of robots – Sensors and vision systems - Transducers and sensors - Tactile sensors – Proximity sensors and range sensors - Vision systems - RTOS - PLCs - Power electronics

Unit-3
Teaching Hours:12
Robot kinematics, dynamics and programming
 

Matrix representation - Forward and reverse kinematics of three degree of freedom – Robot Arm – Homogeneous transformations – Inverse kinematics of Robot – Robo Arm dynamics - D-H representation of forward kinematic equations of robots - Trajectory planning and avoidance of obstacles - Path planning - Skew motion - Joint integrated motion – Straight line motion - Robot languages- Computer control and Robot programming/software

Unit-3
Teaching Hours:12
Robot kinematics, dynamics and programming
 

Matrix representation - Forward and reverse kinematics of three degree of freedom – Robot Arm – Homogeneous transformations – Inverse kinematics of Robot – Robo Arm dynamics - D-H representation of forward kinematic equations of robots - Trajectory planning and avoidance of obstacles - Path planning - Skew motion - Joint integrated motion – Straight line motion - Robot languages- Computer control and Robot programming/software

Unit-3
Teaching Hours:12
Robot kinematics, dynamics and programming
 

Matrix representation - Forward and reverse kinematics of three degree of freedom – Robot Arm – Homogeneous transformations – Inverse kinematics of Robot – Robo Arm dynamics - D-H representation of forward kinematic equations of robots - Trajectory planning and avoidance of obstacles - Path planning - Skew motion - Joint integrated motion – Straight line motion - Robot languages- Computer control and Robot programming/software

Unit-3
Teaching Hours:12
Robot kinematics, dynamics and programming
 

Matrix representation - Forward and reverse kinematics of three degree of freedom – Robot Arm – Homogeneous transformations – Inverse kinematics of Robot – Robo Arm dynamics - D-H representation of forward kinematic equations of robots - Trajectory planning and avoidance of obstacles - Path planning - Skew motion - Joint integrated motion – Straight line motion - Robot languages- Computer control and Robot programming/software

Unit-3
Teaching Hours:12
Robot kinematics, dynamics and programming
 

Matrix representation - Forward and reverse kinematics of three degree of freedom – Robot Arm – Homogeneous transformations – Inverse kinematics of Robot – Robo Arm dynamics - D-H representation of forward kinematic equations of robots - Trajectory planning and avoidance of obstacles - Path planning - Skew motion - Joint integrated motion – Straight line motion - Robot languages- Computer control and Robot programming/software

Unit-3
Teaching Hours:12
Robot kinematics, dynamics and programming
 

Matrix representation - Forward and reverse kinematics of three degree of freedom – Robot Arm – Homogeneous transformations – Inverse kinematics of Robot – Robo Arm dynamics - D-H representation of forward kinematic equations of robots - Trajectory planning and avoidance of obstacles - Path planning - Skew motion - Joint integrated motion – Straight line motion - Robot languages- Computer control and Robot programming/software

Unit-3
Teaching Hours:12
Robot kinematics, dynamics and programming
 

Matrix representation - Forward and reverse kinematics of three degree of freedom – Robot Arm – Homogeneous transformations – Inverse kinematics of Robot – Robo Arm dynamics - D-H representation of forward kinematic equations of robots - Trajectory planning and avoidance of obstacles - Path planning - Skew motion - Joint integrated motion – Straight line motion - Robot languages- Computer control and Robot programming/software

Unit-3
Teaching Hours:12
Robot kinematics, dynamics and programming
 

Matrix representation - Forward and reverse kinematics of three degree of freedom – Robot Arm – Homogeneous transformations – Inverse kinematics of Robot – Robo Arm dynamics - D-H representation of forward kinematic equations of robots - Trajectory planning and avoidance of obstacles - Path planning - Skew motion - Joint integrated motion – Straight line motion - Robot languages- Computer control and Robot programming/software

Unit-4
Teaching Hours:12
Control system design
 

Open loop and feedback control - General approach to control system design - Symbols and drawings - Schematic layout - Travel step diagram, circuit and control modes - Program control - Sequence control - Cascade method - Karnaugh-Veitch mapping - Microcontrollers - Neural network - Artificial Intelligence - Adaptive Control – Hybrid control

Unit-4
Teaching Hours:12
Control system design
 

Open loop and feedback control - General approach to control system design - Symbols and drawings - Schematic layout - Travel step diagram, circuit and control modes - Program control - Sequence control - Cascade method - Karnaugh-Veitch mapping - Microcontrollers - Neural network - Artificial Intelligence - Adaptive Control – Hybrid control

Unit-4
Teaching Hours:12
Control system design
 

Open loop and feedback control - General approach to control system design - Symbols and drawings - Schematic layout - Travel step diagram, circuit and control modes - Program control - Sequence control - Cascade method - Karnaugh-Veitch mapping - Microcontrollers - Neural network - Artificial Intelligence - Adaptive Control – Hybrid control

Unit-4
Teaching Hours:12
Control system design
 

Open loop and feedback control - General approach to control system design - Symbols and drawings - Schematic layout - Travel step diagram, circuit and control modes - Program control - Sequence control - Cascade method - Karnaugh-Veitch mapping - Microcontrollers - Neural network - Artificial Intelligence - Adaptive Control – Hybrid control

Unit-4
Teaching Hours:12
Control system design
 

Open loop and feedback control - General approach to control system design - Symbols and drawings - Schematic layout - Travel step diagram, circuit and control modes - Program control - Sequence control - Cascade method - Karnaugh-Veitch mapping - Microcontrollers - Neural network - Artificial Intelligence - Adaptive Control – Hybrid control

Unit-4
Teaching Hours:12
Control system design
 

Open loop and feedback control - General approach to control system design - Symbols and drawings - Schematic layout - Travel step diagram, circuit and control modes - Program control - Sequence control - Cascade method - Karnaugh-Veitch mapping - Microcontrollers - Neural network - Artificial Intelligence - Adaptive Control – Hybrid control

Unit-4
Teaching Hours:12
Control system design
 

Open loop and feedback control - General approach to control system design - Symbols and drawings - Schematic layout - Travel step diagram, circuit and control modes - Program control - Sequence control - Cascade method - Karnaugh-Veitch mapping - Microcontrollers - Neural network - Artificial Intelligence - Adaptive Control – Hybrid control

Unit-4
Teaching Hours:12
Control system design
 

Open loop and feedback control - General approach to control system design - Symbols and drawings - Schematic layout - Travel step diagram, circuit and control modes - Program control - Sequence control - Cascade method - Karnaugh-Veitch mapping - Microcontrollers - Neural network - Artificial Intelligence - Adaptive Control – Hybrid control

Unit-5
Teaching Hours:12
Robot applications
 

Material handling - Machine loading, Assembly, inspection, processing operations and service robots - Mobile Robots - Robot cell layouts - Robot programming languages

Unit-5
Teaching Hours:12
Robot applications
 

Material handling - Machine loading, Assembly, inspection, processing operations and service robots - Mobile Robots - Robot cell layouts - Robot programming languages

Unit-5
Teaching Hours:12
Robot applications
 

Material handling - Machine loading, Assembly, inspection, processing operations and service robots - Mobile Robots - Robot cell layouts - Robot programming languages

Unit-5
Teaching Hours:12
Robot applications
 

Material handling - Machine loading, Assembly, inspection, processing operations and service robots - Mobile Robots - Robot cell layouts - Robot programming languages

Unit-5
Teaching Hours:12
Robot applications
 

Material handling - Machine loading, Assembly, inspection, processing operations and service robots - Mobile Robots - Robot cell layouts - Robot programming languages

Unit-5
Teaching Hours:12
Robot applications
 

Material handling - Machine loading, Assembly, inspection, processing operations and service robots - Mobile Robots - Robot cell layouts - Robot programming languages

Unit-5
Teaching Hours:12
Robot applications
 

Material handling - Machine loading, Assembly, inspection, processing operations and service robots - Mobile Robots - Robot cell layouts - Robot programming languages

Unit-5
Teaching Hours:12
Robot applications
 

Material handling - Machine loading, Assembly, inspection, processing operations and service robots - Mobile Robots - Robot cell layouts - Robot programming languages

Text Books And Reference Books:

1.      Nagrath and Mittal, “Robotics and Control”, Tata McGraw-Hill, 2003.

2.      Spong and Vidhyasagar, “Robot Dynamics and Control”, John Wiley and sons, 2008.

3.      S. R. Deb and S. Deb, ‘Robotics Technology and Flexible Automation’, Tata McGraw Hill Education Pvt. Ltd, 2010.

Essential Reading / Recommended Reading

1.      Saeed B. Niku, ‘Introduction to Robotics’,Prentice Hall of India, 2003.

2.      Mikell P. Grooveret. al., "Industrial Robots - Technology, Programming and Applications",     McGraw Hill, New York, 2008.

Evaluation Pattern

CIA I -20 marks

CIA II - midsem 50 marks

CIA III - 20 marks

ESE - 100 marks

EEOE561E03 - SMART GRIDS (2022 Batch)

Total Teaching Hours for Semester:45
No of Lecture Hours/Week:3
Max Marks:100
Credits:3

Course Objectives/Course Description

 

Introducing the concepts of various components of Smart Grid, and their impacts on the energy industry, including renewable integration, PHEV penetration, demand side management, and greenhouse gas (GHG) emissions reductions. Energy policy modelling and analysis, such as policies on GHG emissions reductions and incentives to green energy investments, will be integrated into the course as well.

Learning Outcome

CO1: Understand the difference between Smart Grid (SG) vs. Conventional power system (CPS).

CO2: Explore different types of technologies associated with SG and its operational management at consumer level.

CO3: Analyze different types of technologies associated with SG and its operational management at substation level.

CO4: Understand different information and communication technologies suitable for SG environment.

CO5: Understand different ways for handing power quality issues in SG environment at different stages.

Unit-1
Teaching Hours:9
INTRODUCTION TO SMART GRID
 

Evolution of Electric Grid, Concept of Smart Grid, Definitions, Need of Smart Grid, Functions of Smart Grid, Opportunities & Barriers of Smart Grid, Difference between conventional & smart grid, Concept of Resilient &Self Healing Grid, Present development & International policies in Smart Grid. Case study of Smart Grid.CDM opportunities in Smart Grid.

Unit-1
Teaching Hours:9
INTRODUCTION TO SMART GRID
 

Evolution of Electric Grid, Concept of Smart Grid, Definitions, Need of Smart Grid, Functions of Smart Grid, Opportunities & Barriers of Smart Grid, Difference between conventional & smart grid, Concept of Resilient &Self Healing Grid, Present development & International policies in Smart Grid. Case study of Smart Grid.CDM opportunities in Smart Grid.

Unit-1
Teaching Hours:9
INTRODUCTION TO SMART GRID
 

Evolution of Electric Grid, Concept of Smart Grid, Definitions, Need of Smart Grid, Functions of Smart Grid, Opportunities & Barriers of Smart Grid, Difference between conventional & smart grid, Concept of Resilient &Self Healing Grid, Present development & International policies in Smart Grid. Case study of Smart Grid.CDM opportunities in Smart Grid.

Unit-1
Teaching Hours:9
INTRODUCTION TO SMART GRID
 

Evolution of Electric Grid, Concept of Smart Grid, Definitions, Need of Smart Grid, Functions of Smart Grid, Opportunities & Barriers of Smart Grid, Difference between conventional & smart grid, Concept of Resilient &Self Healing Grid, Present development & International policies in Smart Grid. Case study of Smart Grid.CDM opportunities in Smart Grid.

Unit-1
Teaching Hours:9
INTRODUCTION TO SMART GRID
 

Evolution of Electric Grid, Concept of Smart Grid, Definitions, Need of Smart Grid, Functions of Smart Grid, Opportunities & Barriers of Smart Grid, Difference between conventional & smart grid, Concept of Resilient &Self Healing Grid, Present development & International policies in Smart Grid. Case study of Smart Grid.CDM opportunities in Smart Grid.

Unit-1
Teaching Hours:9
INTRODUCTION TO SMART GRID
 

Evolution of Electric Grid, Concept of Smart Grid, Definitions, Need of Smart Grid, Functions of Smart Grid, Opportunities & Barriers of Smart Grid, Difference between conventional & smart grid, Concept of Resilient &Self Healing Grid, Present development & International policies in Smart Grid. Case study of Smart Grid.CDM opportunities in Smart Grid.

Unit-1
Teaching Hours:9
INTRODUCTION TO SMART GRID
 

Evolution of Electric Grid, Concept of Smart Grid, Definitions, Need of Smart Grid, Functions of Smart Grid, Opportunities & Barriers of Smart Grid, Difference between conventional & smart grid, Concept of Resilient &Self Healing Grid, Present development & International policies in Smart Grid. Case study of Smart Grid.CDM opportunities in Smart Grid.

Unit-1
Teaching Hours:9
INTRODUCTION TO SMART GRID
 

Evolution of Electric Grid, Concept of Smart Grid, Definitions, Need of Smart Grid, Functions of Smart Grid, Opportunities & Barriers of Smart Grid, Difference between conventional & smart grid, Concept of Resilient &Self Healing Grid, Present development & International policies in Smart Grid. Case study of Smart Grid.CDM opportunities in Smart Grid.

Unit-2
Teaching Hours:9
SMART GRID TECHNOLOGIES: PART 1
 

Introduction to Smart Meters, Real Time Prizing, Smart Appliances, Automatic Meter Reading(AMR), Outage Management System(OMS), Plug in Hybrid Electric Vehicles(PHEV), Vehicle to Grid, Smart Sensors, Home & Building Automation, Phase Shifting Transformers.

Unit-2
Teaching Hours:9
SMART GRID TECHNOLOGIES: PART 1
 

Introduction to Smart Meters, Real Time Prizing, Smart Appliances, Automatic Meter Reading(AMR), Outage Management System(OMS), Plug in Hybrid Electric Vehicles(PHEV), Vehicle to Grid, Smart Sensors, Home & Building Automation, Phase Shifting Transformers.

Unit-2
Teaching Hours:9
SMART GRID TECHNOLOGIES: PART 1
 

Introduction to Smart Meters, Real Time Prizing, Smart Appliances, Automatic Meter Reading(AMR), Outage Management System(OMS), Plug in Hybrid Electric Vehicles(PHEV), Vehicle to Grid, Smart Sensors, Home & Building Automation, Phase Shifting Transformers.

Unit-2
Teaching Hours:9
SMART GRID TECHNOLOGIES: PART 1
 

Introduction to Smart Meters, Real Time Prizing, Smart Appliances, Automatic Meter Reading(AMR), Outage Management System(OMS), Plug in Hybrid Electric Vehicles(PHEV), Vehicle to Grid, Smart Sensors, Home & Building Automation, Phase Shifting Transformers.

Unit-2
Teaching Hours:9
SMART GRID TECHNOLOGIES: PART 1
 

Introduction to Smart Meters, Real Time Prizing, Smart Appliances, Automatic Meter Reading(AMR), Outage Management System(OMS), Plug in Hybrid Electric Vehicles(PHEV), Vehicle to Grid, Smart Sensors, Home & Building Automation, Phase Shifting Transformers.

Unit-2
Teaching Hours:9
SMART GRID TECHNOLOGIES: PART 1
 

Introduction to Smart Meters, Real Time Prizing, Smart Appliances, Automatic Meter Reading(AMR), Outage Management System(OMS), Plug in Hybrid Electric Vehicles(PHEV), Vehicle to Grid, Smart Sensors, Home & Building Automation, Phase Shifting Transformers.

Unit-2
Teaching Hours:9
SMART GRID TECHNOLOGIES: PART 1
 

Introduction to Smart Meters, Real Time Prizing, Smart Appliances, Automatic Meter Reading(AMR), Outage Management System(OMS), Plug in Hybrid Electric Vehicles(PHEV), Vehicle to Grid, Smart Sensors, Home & Building Automation, Phase Shifting Transformers.

Unit-2
Teaching Hours:9
SMART GRID TECHNOLOGIES: PART 1
 

Introduction to Smart Meters, Real Time Prizing, Smart Appliances, Automatic Meter Reading(AMR), Outage Management System(OMS), Plug in Hybrid Electric Vehicles(PHEV), Vehicle to Grid, Smart Sensors, Home & Building Automation, Phase Shifting Transformers.

Unit-3
Teaching Hours:9
SMART GRID TECHNOLOGIES: PART 2
 

Smart Substations, Substation Automation, Feeder Automation. Geographic Information System(GIS), Intelligent Electronic Devices(IED) & their application for monitoring &protection, Smart storage like Battery, SMES, Pumped Hydro, Compressed Air Energy Storage, Wide Area Measurement System(WAMS), Phase Measurement Unit (PMU).

Unit-3
Teaching Hours:9
SMART GRID TECHNOLOGIES: PART 2
 

Smart Substations, Substation Automation, Feeder Automation. Geographic Information System(GIS), Intelligent Electronic Devices(IED) & their application for monitoring &protection, Smart storage like Battery, SMES, Pumped Hydro, Compressed Air Energy Storage, Wide Area Measurement System(WAMS), Phase Measurement Unit (PMU).

Unit-3
Teaching Hours:9
SMART GRID TECHNOLOGIES: PART 2
 

Smart Substations, Substation Automation, Feeder Automation. Geographic Information System(GIS), Intelligent Electronic Devices(IED) & their application for monitoring &protection, Smart storage like Battery, SMES, Pumped Hydro, Compressed Air Energy Storage, Wide Area Measurement System(WAMS), Phase Measurement Unit (PMU).

Unit-3
Teaching Hours:9
SMART GRID TECHNOLOGIES: PART 2
 

Smart Substations, Substation Automation, Feeder Automation. Geographic Information System(GIS), Intelligent Electronic Devices(IED) & their application for monitoring &protection, Smart storage like Battery, SMES, Pumped Hydro, Compressed Air Energy Storage, Wide Area Measurement System(WAMS), Phase Measurement Unit (PMU).

Unit-3
Teaching Hours:9
SMART GRID TECHNOLOGIES: PART 2
 

Smart Substations, Substation Automation, Feeder Automation. Geographic Information System(GIS), Intelligent Electronic Devices(IED) & their application for monitoring &protection, Smart storage like Battery, SMES, Pumped Hydro, Compressed Air Energy Storage, Wide Area Measurement System(WAMS), Phase Measurement Unit (PMU).

Unit-3
Teaching Hours:9
SMART GRID TECHNOLOGIES: PART 2
 

Smart Substations, Substation Automation, Feeder Automation. Geographic Information System(GIS), Intelligent Electronic Devices(IED) & their application for monitoring &protection, Smart storage like Battery, SMES, Pumped Hydro, Compressed Air Energy Storage, Wide Area Measurement System(WAMS), Phase Measurement Unit (PMU).

Unit-3
Teaching Hours:9
SMART GRID TECHNOLOGIES: PART 2
 

Smart Substations, Substation Automation, Feeder Automation. Geographic Information System(GIS), Intelligent Electronic Devices(IED) & their application for monitoring &protection, Smart storage like Battery, SMES, Pumped Hydro, Compressed Air Energy Storage, Wide Area Measurement System(WAMS), Phase Measurement Unit (PMU).

Unit-3
Teaching Hours:9
SMART GRID TECHNOLOGIES: PART 2
 

Smart Substations, Substation Automation, Feeder Automation. Geographic Information System(GIS), Intelligent Electronic Devices(IED) & their application for monitoring &protection, Smart storage like Battery, SMES, Pumped Hydro, Compressed Air Energy Storage, Wide Area Measurement System(WAMS), Phase Measurement Unit (PMU).

Unit-4
Teaching Hours:9
INFORMATION AND COMMUNICATION TECHNOLOGY FOR SMART GRID
 

Advanced Metering Infrastructure (AMI), Home Area Network (HAN), Neighborhood Area Network (NAN), Wide Area Network (WAN). Bluetooth, ZigBee, GPS, Wi-Fi, Wi-Max based communication, Wireless Mesh Network, Basics of CLOUD Computing & Cyber Security for Smart Grid. Broadband over Power line (BPL). IP based protocols.

Unit-4
Teaching Hours:9
INFORMATION AND COMMUNICATION TECHNOLOGY FOR SMART GRID
 

Advanced Metering Infrastructure (AMI), Home Area Network (HAN), Neighborhood Area Network (NAN), Wide Area Network (WAN). Bluetooth, ZigBee, GPS, Wi-Fi, Wi-Max based communication, Wireless Mesh Network, Basics of CLOUD Computing & Cyber Security for Smart Grid. Broadband over Power line (BPL). IP based protocols.

Unit-4
Teaching Hours:9
INFORMATION AND COMMUNICATION TECHNOLOGY FOR SMART GRID
 

Advanced Metering Infrastructure (AMI), Home Area Network (HAN), Neighborhood Area Network (NAN), Wide Area Network (WAN). Bluetooth, ZigBee, GPS, Wi-Fi, Wi-Max based communication, Wireless Mesh Network, Basics of CLOUD Computing & Cyber Security for Smart Grid. Broadband over Power line (BPL). IP based protocols.

Unit-4
Teaching Hours:9
INFORMATION AND COMMUNICATION TECHNOLOGY FOR SMART GRID
 

Advanced Metering Infrastructure (AMI), Home Area Network (HAN), Neighborhood Area Network (NAN), Wide Area Network (WAN). Bluetooth, ZigBee, GPS, Wi-Fi, Wi-Max based communication, Wireless Mesh Network, Basics of CLOUD Computing & Cyber Security for Smart Grid. Broadband over Power line (BPL). IP based protocols.

Unit-4
Teaching Hours:9
INFORMATION AND COMMUNICATION TECHNOLOGY FOR SMART GRID
 

Advanced Metering Infrastructure (AMI), Home Area Network (HAN), Neighborhood Area Network (NAN), Wide Area Network (WAN). Bluetooth, ZigBee, GPS, Wi-Fi, Wi-Max based communication, Wireless Mesh Network, Basics of CLOUD Computing & Cyber Security for Smart Grid. Broadband over Power line (BPL). IP based protocols.

Unit-4
Teaching Hours:9
INFORMATION AND COMMUNICATION TECHNOLOGY FOR SMART GRID
 

Advanced Metering Infrastructure (AMI), Home Area Network (HAN), Neighborhood Area Network (NAN), Wide Area Network (WAN). Bluetooth, ZigBee, GPS, Wi-Fi, Wi-Max based communication, Wireless Mesh Network, Basics of CLOUD Computing & Cyber Security for Smart Grid. Broadband over Power line (BPL). IP based protocols.

Unit-4
Teaching Hours:9
INFORMATION AND COMMUNICATION TECHNOLOGY FOR SMART GRID
 

Advanced Metering Infrastructure (AMI), Home Area Network (HAN), Neighborhood Area Network (NAN), Wide Area Network (WAN). Bluetooth, ZigBee, GPS, Wi-Fi, Wi-Max based communication, Wireless Mesh Network, Basics of CLOUD Computing & Cyber Security for Smart Grid. Broadband over Power line (BPL). IP based protocols.

Unit-4
Teaching Hours:9
INFORMATION AND COMMUNICATION TECHNOLOGY FOR SMART GRID
 

Advanced Metering Infrastructure (AMI), Home Area Network (HAN), Neighborhood Area Network (NAN), Wide Area Network (WAN). Bluetooth, ZigBee, GPS, Wi-Fi, Wi-Max based communication, Wireless Mesh Network, Basics of CLOUD Computing & Cyber Security for Smart Grid. Broadband over Power line (BPL). IP based protocols.

Unit-5
Teaching Hours:9
POWER QUALITY MANAGEMENT IN SMART GRID
 

Power Quality & EMC in Smart Grid, Power Quality issues of Grid connected Renewable Energy Sources, Power Quality Conditioners for Smart Grid, Web based Power Quality monitoring, Power Quality Audit.

Unit-5
Teaching Hours:9
POWER QUALITY MANAGEMENT IN SMART GRID
 

Power Quality & EMC in Smart Grid, Power Quality issues of Grid connected Renewable Energy Sources, Power Quality Conditioners for Smart Grid, Web based Power Quality monitoring, Power Quality Audit.

Unit-5
Teaching Hours:9
POWER QUALITY MANAGEMENT IN SMART GRID
 

Power Quality & EMC in Smart Grid, Power Quality issues of Grid connected Renewable Energy Sources, Power Quality Conditioners for Smart Grid, Web based Power Quality monitoring, Power Quality Audit.

Unit-5
Teaching Hours:9
POWER QUALITY MANAGEMENT IN SMART GRID
 

Power Quality & EMC in Smart Grid, Power Quality issues of Grid connected Renewable Energy Sources, Power Quality Conditioners for Smart Grid, Web based Power Quality monitoring, Power Quality Audit.

Unit-5
Teaching Hours:9
POWER QUALITY MANAGEMENT IN SMART GRID
 

Power Quality & EMC in Smart Grid, Power Quality issues of Grid connected Renewable Energy Sources, Power Quality Conditioners for Smart Grid, Web based Power Quality monitoring, Power Quality Audit.

Unit-5
Teaching Hours:9
POWER QUALITY MANAGEMENT IN SMART GRID
 

Power Quality & EMC in Smart Grid, Power Quality issues of Grid connected Renewable Energy Sources, Power Quality Conditioners for Smart Grid, Web based Power Quality monitoring, Power Quality Audit.

Unit-5
Teaching Hours:9
POWER QUALITY MANAGEMENT IN SMART GRID
 

Power Quality & EMC in Smart Grid, Power Quality issues of Grid connected Renewable Energy Sources, Power Quality Conditioners for Smart Grid, Web based Power Quality monitoring, Power Quality Audit.

Unit-5
Teaching Hours:9
POWER QUALITY MANAGEMENT IN SMART GRID
 

Power Quality & EMC in Smart Grid, Power Quality issues of Grid connected Renewable Energy Sources, Power Quality Conditioners for Smart Grid, Web based Power Quality monitoring, Power Quality Audit.

Text Books And Reference Books:

1. Ali Keyhani, Mohammad N. Marwali, Min Dai “Integration of Green and Renewable Energy in Electric Power Systems”, Wiley

2. Clark W. Gellings, “The Smart Grid: Enabling Energy Efficiency and Demand Response”,CRC Press

3. JanakaEkanayake, Nick Jenkins, KithsiriLiyanage, Jianzhong Wu, Akihiko Yokoyama,“Smart Grid: Technology and Applications”, Wiley

4. Jean Claude Sabonnadière, NouredineHadjsaïd, “Smart Grids”, Wiley Blackwell

5. Peter S. Fox Penner, “Smart Power: Climate Changes, the Smart Grid, and the Future ofElectric Utilities”, Island Press; 1 edition 8 Jun 2010

6. S. Chowdhury, S. P. Chowdhury, P. Crossley, “Microgrids and Active DistributionNetworks.” Institution of Engineering and Technology, 30 Jun 2009

7. Stuart Borlase, “Smart Grids (Power Engineering)”, CRC Press

Essential Reading / Recommended Reading

1. Andres Carvallo, John Cooper, “The Advanced Smart Grid: Edge Power DrivingSustainability: 1”, Artech House Publishers July 2011

2. James Northcote, Green, Robert G. Wilson “Control and Automation of Electric PowerDistribution Systems (Power Engineering)”, CRC Press

3. MladenKezunovic, Mark G. Adamiak, Alexander P. Apostolov, Jeffrey George Gilbert“Substation Automation (Power Electronics and Power Systems)”, Springer

4. R. C. Dugan, Mark F. McGranghan, Surya Santoso, H. Wayne Beaty, “Electrical PowerSystem Quality”, 2nd Edition, McGraw Hill Publication

5. Yang Xiao, “Communication and Networking in Smart Grids”, CRC Press.

Evaluation Pattern

Continuous Internal Assessment (CIA) : 50% (50 marks out of 100 marks)

End Semester Examination(ESE)          : 50% (50 marks out of 100 marks)

Components of the CIA

CIA I  :  Subject Assignments / Online Tests             : 10 marks

CIA II:   Mid Semester Examination (Theory)                      : 25 marks                   

CIAIII: Quiz/Seminar/Case Studies/Project/

Innovative assignments/ presentations/ publications              : 10 marks

Attendance                                                                             : 05 marks

            Total                                                                            : 50 marks

Mid Semester Examination (MSE): Theory Papers:

The MSE is conducted for 50 marks of 2 hours duration.

Question paper pattern; Five out of Six questions have to be answered. Each question carries 10 marks

End Semester Examination (ESE):

The ESE is conducted for 100 marks of 3 hours duration.

The syllabus for the theory papers are divided into FIVE units and each unit carries equal Weightage in terms of marks distribution.

Question paper pattern is as follows.

Two full questions with either or choice will be drawn from each unit. Each question carries 20 marks. There could be a maximum of three sub divisions in a question. The emphasis on the questions is to test the objectiveness, analytical skill and application skill of the concept, from a question bank which reviewed and updated every year

The criteria for drawing the questions from the Question Bank are as follows

50 % - Medium Level questions

25 % - Simple level questions

25 % - Complex level questions

ELC531P - DATABASE MANAGEMENT SYSTEM (2022 Batch)

Total Teaching Hours for Semester:75
No of Lecture Hours/Week:5
Max Marks:100
Credits:4

Course Objectives/Course Description

 

The objective of this course is to impart the fundamentals of data models and to represent a database system using ER diagrams, to study SQL and relational database design, to understand the internal storage structures using different file and indexing techniques which will help in physical DB design, to understand the fundamental concepts of transaction processing- concurrency control techniques and recovery procedures and to have an introductory knowledge about the Storage and Query processing Techniques

Learning Outcome

CO1: Classify the modern and futuristic database applications based on size and complexity

CO2: Develop ER model to Relational model to perform database design effectively

CO3: Examine queries using normalization criteria and optimize queries

CO4: Compare and contrast various indexing strategies in different database systems

CO5: Examine how advanced databases differ from traditional databases.

CO6: Analyze the applications of database applied to solve real world problems.

Unit-1
Teaching Hours:9
RELATIONAL DATABASES
 

Purpose of Database System — Views of data — Data Models — Database System Architecture — Introduction to relational databases — Relational Model — Keys — Relational Algebra — SQL fundamentals — Advanced SQL features — Embedded SQL– Dynamic SQL

Unit-2
Teaching Hours:9
DATABASE DESIGN
 

Entity-Relationship model — E-R Diagrams — Enhanced-ER Model — ER-to-Relational Mapping — Functional Dependencies — Non-loss Decomposition — First, Second, Third Normal Forms, Dependency Preservation — Boyce/Codd Normal Form — Multi-valued Dependencies and Fourth Normal Form — Join Dependencies and Fifth Normal Form

Unit-3
Teaching Hours:9
TRANSACTIONS
 

Transaction Concepts — ACID Properties — Schedules — Serializability — Concurrency Control — Need for Concurrency — Locking Protocols — Two Phase Locking — Deadlock — Transaction Recovery — Save Points — Isolation Levels — SQL Facilities for Concurrency and Recovery.

Unit-4
Teaching Hours:9
IMPLEMENTATION TECHNIQUES
 

RAID — File Organization — Organization of Records in Files — Indexing and Hashing –Ordered Indices — B+ tree Index Files — B tree Index Files — Static Hashing — Dynamic Hashing — Query Processing Overview — Algorithms for SELECT and JOIN operations — Query optimization using Heuristics and Cost Estimation.

Unit-5
Teaching Hours:9
ADVANCED TOPICS
 

Distributed Databases: Architecture, Data Storage, Transaction Processing — Object-based Databases: Object Database Concepts, Object-Relational features, ODMG Object Model, ODL, OQL — XML Databases: XML Hierarchical Model, DTD, XML Schema, XQuery — Information Retrieval: IR Concepts, Retrieval Models, Queries in IR systems.

Text Books And Reference Books:

T1. Abraham Silberschatz, Henry F. Korth, S. Sudharshan, “Database System Concepts”, Sixth Edition, Tata McGraw Hill, 2014.

 

T2. Ramez Elmasri, Shamkant B. Navathe, “Fundamentals of Database Systems”, Seventh Edition, Pearson Education, 2017.

Essential Reading / Recommended Reading

R1.C. J. Date, A. Kannan, S. Swamynathan, “An Introduction to Database Systems”, Eighth Edition, Pearson Education, 2006.

R2.Raghu Ramakrishnan, Johannes Gehrke, “Database Management Systems”, Fourth Edition, Tata McGraw Hill, 2010.

G. K. Gupta, “Database Management Systems”, Tata McGraw Hill, 2011.

R3.Carlos Coronel, Steven Morris, Peter Rob, “Database Systems: Design, Implementation and Management”, Ninth Edition, Cengage Learning, 2011.

Evaluation Pattern

CIA - 70 marks

ESE - 30 marks

ELC532P - DIGITAL SIGNAL PROCESSING (2022 Batch)

Total Teaching Hours for Semester:75
No of Lecture Hours/Week:5
Max Marks:100
Credits:4

Course Objectives/Course Description

 
  • Analyze and Compute FFT of a discrete time signal.

  • Design the various FIR filter techniques.

  • Design the various IIR filter techniques.

  • Analyze the finite word length effects in signal processing.

  • Learn the fundamentals of digital signal processors.

 

Learning Outcome

CO1: Calculate the FFT of a discrete time signal

CO2: Demonstrate various FIR filter techniques

CO3: Demonstrate various IIR filter techniques

CO4: Summarize finite word length effects in signal processing

CO5: Explain the fundamentals of Digital signal processor

Unit-1
Teaching Hours:9
FAST FOURIER TRANSFORM AND CONVOLUTION
 

Introduction to DFT – Efficient computation of DFT- Properties of DFT – FFT algorithms – Radix-2 FFT algorithms – Decimation in Time – Decimation in Frequency algorithms –sectioned convolution- overlap add method- overlap save method.

Unit-2
Teaching Hours:9
FINITE IMPULSE RESPONSE DIGITAL FILTERS
 

Linear phase filters-Frequency response of linear phase FIR filters-Fourier series method of designing FIR filters-Windowing techniques for design of linear phase FIR filters:Rectangular- Hamming- Hanning-Blackman windows - Gibbs phenomenon –principle of frequency sampling technique- FIR Filter Realization-Direct form,Cascade ,Linear phase FIR realization.

Unit-3
Teaching Hours:9
INFINITE IMPULSE RESPONSE DIGITAL FILTERS
 

Review of design of analogue Butterworth and Chebyshev Filters- Design of IIR digital filters using impulse invariance technique –bilinear transformation – pre warping –Frequency transformation in digital domain – IIR Filter Realization - Direct form I, Direct form II, cascade and parallel

Unit-4
Teaching Hours:9
FINITE WORD LENGTH EFFECTS IN DIGITAL FILTERS
 

Binary fixed point and floating point number representations - Comparison- Quantization noise – truncation and rounding-derivation for quantization noise power – input quantization error-coefficient quantization error –limit cycle oscillations-dead band problems - Overflow error-signal scaling.

Unit-5
Teaching Hours:9
DIGITAL SIGNAL PROCESSOR
 

Introduction to DSP Architecture – Dedicated MAC unit - Features of C6X Processor - Internal Architecture - Functional Units and Operation - Addressing Modes

Text Books And Reference Books:

T1. John G Proakis- Dimtris G Manolakis, Digital Signal Processing Principles-Algorithms and   Application, Pearson/PHI- 4th Edition, 2007

T2. S. K. Mitra- “Digital Signal Processing- A Computer based approach”, TataMc-Graw-Hill, 2001, New Delhi.

T3. B. Venkataramani & M.Bhaskar, Digital Signal Processor Architecture-Programming and Application, Tata Mc-GrawHill 2002

 

Essential Reading / Recommended Reading

R1. Allan V.Openheim, Ronald W. Sehafer& John R. Buck-“Discrete Time Signal   Processing”, Third edition, Pearson/Prentice Hall,2014.

R2. Johny R-Johnson: Introduction to Digital Signal Processing, Prentice-Hall- 1984

R3. Emmanuel I Fetchor “Digital Signal Processing: A Practical Approach”, 2/E -Prentice Hall

R4. Li Tan “ Digital Signal Processing” Elsevier-2008

R5. Andreas Antoniou, “Digital Signal Processing”, Tata McGraw Hill, 2006

 

Evaluation Pattern

Theory-65 marks

Practicals-35 marks

ELC533P - MICROCONTROLLER BASED SYSTEM DESIGN (2022 Batch)

Total Teaching Hours for Semester:75
No of Lecture Hours/Week:5
Max Marks:100
Credits:4

Course Objectives/Course Description

 

This course aims atlearning the architecture programming and interfacing of  Microcontrollers (ARM and 8051)

Learning Outcome

CO1: Summarize the architectural features of 8051 microcontroller

CO2: Apply the knowledge of ALP, Embedded C to solve embedded software concepts

CO3: Examine and demonstrate the working of I/O devices

CO4: Relate the advance features of ARM processors for efficient embedded system

CO5: Interpret unique architectural features of advance processors

Unit-1
Teaching Hours:9
8051 ARCHITECTURE
 

Architecture – Program memory organization – Data memory organization- Internal RAM-SFR-Flag Register- Timers/Counters & its operation registersInterrupts of 8051 - I/O ports and its structures  Interfacing I/O Devices – External memory interfacing-8051 addressing modes.

Unit-2
Teaching Hours:9
8051 PROGRAMMING
 

Instruction set –Data Transfer Instructions - Arithmetic Instructions – Logical Instructions –Control transfer-Bit Manipulation Instructions – Timer/ Counter Programming – Serial Communication Programming- Interrupt Programming & its structure  – I/O port Programming Assembly language programming, Introduction to Embedded C.

Unit-3
Teaching Hours:9
SYSTEM DESIGN USING 8051
 

Interfacing LCD Display –  Matrix Keypad Interfacing – ADC Interfacing –DAC Interfacing –Sensor Interfacing –Interfacing with 8255 Controlling AC appliances – Stepper Motor Control – DC Motor Interfacing.

Unit-4
Teaching Hours:9
HIGH PERFORMANCE RISC ARCHITECTURE: ARM
 

The ARM architecture– Bus Architecture-ARM organization and implementation – Addressing Modes-The ARM instruction set - The thumb instruction set– ARM assembly language program

Unit-5
Teaching Hours:9
REAL TIME OPERATING SYSTEMS
 

Processors and hardware units in an embedded system-Embedded Systems on a Chip (SoC) –Serial Communication Devices -Parallel Port Devices-Advanced I/O Serial high speed buses-Interrupt Routines Handling in RTOS- RTOS Task scheduling models-Inter process communication and synchronisation -Case Study.

Text Books And Reference Books:

T1. Gibson, “Microprocessor and Interfacing” Tata McGraw Hill,II edition

T2. Muhammad Ali Mazidi, Rolin D. Mckinlay, Danny Causey ‘ 8051 Microcontroller and Embedded Systems using Assembly and C ’ ,2nd edition, Prentice Hall of India,2008

Essential Reading / Recommended Reading

R1. Myke Predko, “Programming and customizing the 8051 microcontroller”, Tata
McGraw Hill 2001.

R2. Steve Furber , ‘’ ARM System On –Chip architecture “Addision Wesley , 2nd edition,2000.

Evaluation Pattern

CIA 1, CIA 2, CIA 3, ESE (As per the university norms)

ELC544E01 - SOFTWARE ENGINEERING (2022 Batch)

Total Teaching Hours for Semester:45
No of Lecture Hours/Week:3
Max Marks:100
Credits:3

Course Objectives/Course Description

 

This course aims to be aware of Different life cycle models; Requirement dictation process; Analysis modeling and specification; Architectural and detailed design methods; Implementation and testing strategies; Verification and validation techniques; Project planning and management and Use of CASE tools.

Learning Outcome

CO1: Describe the Software Development Life cycle and various Software process models.

CO2: Explain software requirement elicitation process and SRS document

CO3: Determine the user requirements and assign suitable software design model

CO4: Illustrate different techniques of software testing and maintenance

CO5: Manipulate the cost estimation techniques and project scheduling methods in software development process

Unit-1
Teaching Hours:9
SOFTWARE PROCESS
 

Introduction –S/W Engineering Paradigm  – life cycle models (water fall, incremental, spiral, WINWIN spiral, evolutionary, prototyping, object oriented) - system engineering – computer based system  – verification – validation – life cycle process – development process –system engineering hierarchy.

Unit-2
Teaching Hours:9
SOFTWARE REQUIREMENTS
 

Functional and non-functional - user – system –requirement engineering process – feasibility studies – requirements – elicitation – validation and management – software prototyping – prototyping in the software process – rapid prototyping techniques – user interface prototyping -S/W document. Agile methods, Extreme Programming, SCRUM

Unit-3
Teaching Hours:9
DESIGN CONCEPTS AND PRINCIPLES
 

Design process and concepts – modular design – design heuristic – design model and document. Architectural design – software architecture – data design – architectural design – transform and transaction mapping – user interface design – user interface design principles. Real time systems - Real time software design – system design – real time executives – data acquisition system - monitoring and control system. SCM – Need for SCM – Version control – Introduction to SCM process – Software configuration items.

Unit-4
Teaching Hours:9
TESTING
 

Taxonomy of software testing – levels – test activities – types of s/w test – black box testing – testing boundary conditions – structural testing – test coverage criteria based on data flow mechanisms – regression testing – testing in the large. S/W testing strategies – strategic approach and issues - unit testing – integration testing – validation testing – system testing and debugging

Unit-5
Teaching Hours:9
SOFTWARE PROJECT MANAGEMENT
 

Measures and measurements – S/W complexity and science measure – size measure – data and logic structure measure – information flow measure. Software cost estimation – function point models – COCOMO model- Delphi method.- Defining a Task Network – Scheduling – Earned Value Analysis – Error Tracking - Software changes – program evolution dynamics – software maintenance – Architectural evolution. Taxonomy of CASE tools – Case Study

Text Books And Reference Books:

T1. Roger S. Pressman, Software engineering- A Practitioner’s Approach, McGraw-Hill International Edition, 6th Edition 2012

Essential Reading / Recommended Reading

R1. Anirban Basu, “Software Quality Assurance, Testing and Metrics”, First Edition, PHI Learning, 2015

R2. Ian Sommerville, “Software engineering,” Pearson education Asia, 9th Edition 2013

R3. Pankaj Jalote- “An Integrated Approach to Software Engineering,” Narosa publishing house 2011

R4. James F Peters and Witold Pedryez, “Software Engineering – An Engineering Approach”, John Wiley and Sons, New Delhi, 2010

R5. Ali Behforooz and Frederick J Hudson, “Software Engineering Fundamentals”, OUP India 2012

Evaluation Pattern

CIA - 50marks

ESE - 50marks

ELC544E04 - OPERATING SYSTEMS (2022 Batch)

Total Teaching Hours for Semester:45
No of Lecture Hours/Week:3
Max Marks:100
Credits:3

Course Objectives/Course Description

 

The Objectives of this course is to have an overview of different types of operating systems. They also include an understanding of the components of an operating system; To develop knowledge of process management and have a thorough knowledge of storage management; To know the concepts of I/O and file systems.

Learning Outcome

CO1: Explain structure, services and functionalities of operating systems.

CO2: Compute system performance with respect to Job Scheduling and process synchronization concepts

CO3: Analyze deadlocks and memory management strategies to improve fault tolerance

CO4: Illustrate virtual memory management technique to reduce access time of data from memory

CO5: Implement File System to distribute file structure across the memory

Unit-1
Teaching Hours:9
INTRODUCTION
 

What operating systems do, Computer System Architecture, Operating System Structure, Operating System Operations, Process Management, Memory Management, Storage Management, Protection and Security; System Structures: Operating System Services, User Operating System Interface, System Calls, Types of System Calls

Unit-2
Teaching Hours:9
PROCESS MANAGEMENT
 

Process Concept, Process Scheduling, Operations on Processes, Inter-process Communication; Threads: Overview, Multithreading Models, Thread Libraries; CPU Scheduling: Basic Concepts, Scheduling Criteria, Scheduling Algorithms, Multiple- Processor Scheduling

Unit-3
Teaching Hours:9
PROCESS SYNCHRONIZATION AND DEADLOCKS
 

Background, The Critical Section Problem, Peterson’s Solution, Synchronization Hardware, Semaphores, Classical Problems of Synchronization, Monitors, Synchronization Examples.

Unit-4
Teaching Hours:9
MEMORY MANAGEMENT AND VIRTUAL MEMORY
 

Memory Management: Background, Swapping, Contiguous Memory Allocation, Paging, Virtual Memory: Background, Demand Paging, Copy on Write, Page Replacement, Allocation of frames, Thrashing, Allocating Kernel Memory

Unit-5
Teaching Hours:9
FILE SYSTEM INTERFACE AND FILE SYSTEM IMPLEMENTATION & MASS STORAGE STRUCTURE
 

File System Interface: File System: File Concept, Access Methods, Directory Structure, File System Mounting, File Sharing, Protection; File System Implementation & Mass Storage Structure: Implementing File Systems: File System Structure, File System Implementation, Directory Implementation, Allocation Methods, Free Space Management. Disk structure, Disk Attachment, Disk Scheduling Methods, Disk Management, Swap-Space Management

Text Books And Reference Books:

T1. Abraham Silberschatz, Peter Baer Galvin and Greg Gagne, “Operating System Concepts”, Ninth Edition, John Wiley & Sons (ASIA) Pvt. Ltd, 2013

Essential Reading / Recommended Reading

R1. Harvey M. Deitel, “Operating Systems”, Third Edition, Pearson Education Pvt. Ltd, 2007

R2. Andrew S. Tanenbaum, “Modern Operating Systems”, Prentice Hall of India Pvt. Ltd, 2009

R3. William Stallings, “Operating System”, Pearson Education 2009

R4. Pramod Chandra P. Bhatt – “An Introduction to Operating Systems, Concepts and Practice”, PHI, 2010

Evaluation Pattern

CIA - 50marks

ESE - 50marks

IC521 - CONSTITUTION OF INDIA (2022 Batch)

Total Teaching Hours for Semester:15
No of Lecture Hours/Week:1
Max Marks:0
Credits:0

Course Objectives/Course Description

 

It create awareness on the rights and responsibilities as a citizen of India and to understand the administrative structure, legal system in Inida.

Learning Outcome

CO1: To understand constitutional provisions and responsibilities

CO2: To understand the administrative powers and legal provisions

Unit-1
Teaching Hours:3
Making of the Constitution and Fundamental Rights
 

Introduction to the constitution of India, the preamble of the constitution, Justice,  Liberty, equality, Fraternity, basic postulates of the preamble

Right to equality, Right to freedom, Right against exploitation, Right to freedom of religion, Cultural and educational rights, Right to constitutional remedies 

Unit-1
Teaching Hours:3
Making of the Constitution and Fundamental Rights
 

Introduction to the constitution of India, the preamble of the constitution, Justice,  Liberty, equality, Fraternity, basic postulates of the preamble

Right to equality, Right to freedom, Right against exploitation, Right to freedom of religion, Cultural and educational rights, Right to constitutional remedies 

Unit-1
Teaching Hours:3
Making of the Constitution and Fundamental Rights
 

Introduction to the constitution of India, the preamble of the constitution, Justice,  Liberty, equality, Fraternity, basic postulates of the preamble

Right to equality, Right to freedom, Right against exploitation, Right to freedom of religion, Cultural and educational rights, Right to constitutional remedies 

Unit-1
Teaching Hours:3
Making of the Constitution and Fundamental Rights
 

Introduction to the constitution of India, the preamble of the constitution, Justice,  Liberty, equality, Fraternity, basic postulates of the preamble

Right to equality, Right to freedom, Right against exploitation, Right to freedom of religion, Cultural and educational rights, Right to constitutional remedies 

Unit-1
Teaching Hours:3
Making of the Constitution and Fundamental Rights
 

Introduction to the constitution of India, the preamble of the constitution, Justice,  Liberty, equality, Fraternity, basic postulates of the preamble

Right to equality, Right to freedom, Right against exploitation, Right to freedom of religion, Cultural and educational rights, Right to constitutional remedies 

Unit-1
Teaching Hours:3
Making of the Constitution and Fundamental Rights
 

Introduction to the constitution of India, the preamble of the constitution, Justice,  Liberty, equality, Fraternity, basic postulates of the preamble

Right to equality, Right to freedom, Right against exploitation, Right to freedom of religion, Cultural and educational rights, Right to constitutional remedies 

Unit-1
Teaching Hours:3
Making of the Constitution and Fundamental Rights
 

Introduction to the constitution of India, the preamble of the constitution, Justice,  Liberty, equality, Fraternity, basic postulates of the preamble

Right to equality, Right to freedom, Right against exploitation, Right to freedom of religion, Cultural and educational rights, Right to constitutional remedies 

Unit-1
Teaching Hours:3
Making of the Constitution and Fundamental Rights
 

Introduction to the constitution of India, the preamble of the constitution, Justice,  Liberty, equality, Fraternity, basic postulates of the preamble

Right to equality, Right to freedom, Right against exploitation, Right to freedom of religion, Cultural and educational rights, Right to constitutional remedies 

Unit-1
Teaching Hours:3
Making of the Constitution and Fundamental Rights
 

Introduction to the constitution of India, the preamble of the constitution, Justice,  Liberty, equality, Fraternity, basic postulates of the preamble

Right to equality, Right to freedom, Right against exploitation, Right to freedom of religion, Cultural and educational rights, Right to constitutional remedies 

Unit-2
Teaching Hours:3
Directive Principles of State Policy and Fundamental Duties
 

Directive Principles of State Policy, key aspects envisaged through the directive principles, Article 51A and  main duties of a citizen in India

Unit-2
Teaching Hours:3
Directive Principles of State Policy and Fundamental Duties
 

Directive Principles of State Policy, key aspects envisaged through the directive principles, Article 51A and  main duties of a citizen in India

Unit-2
Teaching Hours:3
Directive Principles of State Policy and Fundamental Duties
 

Directive Principles of State Policy, key aspects envisaged through the directive principles, Article 51A and  main duties of a citizen in India

Unit-2
Teaching Hours:3
Directive Principles of State Policy and Fundamental Duties
 

Directive Principles of State Policy, key aspects envisaged through the directive principles, Article 51A and  main duties of a citizen in India

Unit-2
Teaching Hours:3
Directive Principles of State Policy and Fundamental Duties
 

Directive Principles of State Policy, key aspects envisaged through the directive principles, Article 51A and  main duties of a citizen in India

Unit-2
Teaching Hours:3
Directive Principles of State Policy and Fundamental Duties
 

Directive Principles of State Policy, key aspects envisaged through the directive principles, Article 51A and  main duties of a citizen in India

Unit-2
Teaching Hours:3
Directive Principles of State Policy and Fundamental Duties
 

Directive Principles of State Policy, key aspects envisaged through the directive principles, Article 51A and  main duties of a citizen in India

Unit-2
Teaching Hours:3
Directive Principles of State Policy and Fundamental Duties
 

Directive Principles of State Policy, key aspects envisaged through the directive principles, Article 51A and  main duties of a citizen in India

Unit-2
Teaching Hours:3
Directive Principles of State Policy and Fundamental Duties
 

Directive Principles of State Policy, key aspects envisaged through the directive principles, Article 51A and  main duties of a citizen in India

Unit-3
Teaching Hours:3
Union Government and Union Legislature
 

the president of india, the vice president of india, election method, term, removal, executive and legislative powers, prime minister and council of ministers, election, powers, parliament, the Upper House and the Lower House, composition, function

Unit-3
Teaching Hours:3
Union Government and Union Legislature
 

the president of india, the vice president of india, election method, term, removal, executive and legislative powers, prime minister and council of ministers, election, powers, parliament, the Upper House and the Lower House, composition, function

Unit-3
Teaching Hours:3
Union Government and Union Legislature
 

the president of india, the vice president of india, election method, term, removal, executive and legislative powers, prime minister and council of ministers, election, powers, parliament, the Upper House and the Lower House, composition, function

Unit-3
Teaching Hours:3
Union Government and Union Legislature
 

the president of india, the vice president of india, election method, term, removal, executive and legislative powers, prime minister and council of ministers, election, powers, parliament, the Upper House and the Lower House, composition, function

Unit-3
Teaching Hours:3
Union Government and Union Legislature
 

the president of india, the vice president of india, election method, term, removal, executive and legislative powers, prime minister and council of ministers, election, powers, parliament, the Upper House and the Lower House, composition, function

Unit-3
Teaching Hours:3
Union Government and Union Legislature
 

the president of india, the vice president of india, election method, term, removal, executive and legislative powers, prime minister and council of ministers, election, powers, parliament, the Upper House and the Lower House, composition, function

Unit-3
Teaching Hours:3
Union Government and Union Legislature
 

the president of india, the vice president of india, election method, term, removal, executive and legislative powers, prime minister and council of ministers, election, powers, parliament, the Upper House and the Lower House, composition, function

Unit-3
Teaching Hours:3
Union Government and Union Legislature
 

the president of india, the vice president of india, election method, term, removal, executive and legislative powers, prime minister and council of ministers, election, powers, parliament, the Upper House and the Lower House, composition, function

Unit-3
Teaching Hours:3
Union Government and Union Legislature
 

the president of india, the vice president of india, election method, term, removal, executive and legislative powers, prime minister and council of ministers, election, powers, parliament, the Upper House and the Lower House, composition, function

Unit-4
Teaching Hours:3
Indian Judiciary
 

Supreme court, high courts, hierarchy, jurisdiction, civil and criminal cases, judicial activism 

Unit-4
Teaching Hours:3
Indian Judiciary
 

Supreme court, high courts, hierarchy, jurisdiction, civil and criminal cases, judicial activism 

Unit-4
Teaching Hours:3
Indian Judiciary
 

Supreme court, high courts, hierarchy, jurisdiction, civil and criminal cases, judicial activism 

Unit-4
Teaching Hours:3
Indian Judiciary
 

Supreme court, high courts, hierarchy, jurisdiction, civil and criminal cases, judicial activism 

Unit-4
Teaching Hours:3
Indian Judiciary
 

Supreme court, high courts, hierarchy, jurisdiction, civil and criminal cases, judicial activism 

Unit-4
Teaching Hours:3
Indian Judiciary
 

Supreme court, high courts, hierarchy, jurisdiction, civil and criminal cases, judicial activism 

Unit-4
Teaching Hours:3
Indian Judiciary
 

Supreme court, high courts, hierarchy, jurisdiction, civil and criminal cases, judicial activism 

Unit-4
Teaching Hours:3
Indian Judiciary
 

Supreme court, high courts, hierarchy, jurisdiction, civil and criminal cases, judicial activism 

Unit-4
Teaching Hours:3
Indian Judiciary
 

Supreme court, high courts, hierarchy, jurisdiction, civil and criminal cases, judicial activism 

Unit-5
Teaching Hours:3
State Government and Elections in India
 

State executive, governor, powers , legislative council and assembly, composition, powers, electoral process, election commission, emergency

Unit-5
Teaching Hours:3
State Government and Elections in India
 

State executive, governor, powers , legislative council and assembly, composition, powers, electoral process, election commission, emergency

Unit-5
Teaching Hours:3
State Government and Elections in India
 

State executive, governor, powers , legislative council and assembly, composition, powers, electoral process, election commission, emergency

Unit-5
Teaching Hours:3
State Government and Elections in India
 

State executive, governor, powers , legislative council and assembly, composition, powers, electoral process, election commission, emergency

Unit-5
Teaching Hours:3
State Government and Elections in India
 

State executive, governor, powers , legislative council and assembly, composition, powers, electoral process, election commission, emergency

Unit-5
Teaching Hours:3
State Government and Elections in India
 

State executive, governor, powers , legislative council and assembly, composition, powers, electoral process, election commission, emergency

Unit-5
Teaching Hours:3
State Government and Elections in India
 

State executive, governor, powers , legislative council and assembly, composition, powers, electoral process, election commission, emergency

Unit-5
Teaching Hours:3
State Government and Elections in India
 

State executive, governor, powers , legislative council and assembly, composition, powers, electoral process, election commission, emergency

Unit-5
Teaching Hours:3
State Government and Elections in India
 

State executive, governor, powers , legislative council and assembly, composition, powers, electoral process, election commission, emergency

Text Books And Reference Books:

B R Ambedkar, ‘The Constitution of India’. Government of India

Essential Reading / Recommended Reading

Durga Das Basu, Introduction to the Constitution of India, LexisNexis, 24th edition

Evaluation Pattern

Only class evaluations and discussions

NCCOE01 - NCC1 (2022 Batch)

Total Teaching Hours for Semester:45
No of Lecture Hours/Week:3
Max Marks:100
Credits:3

Course Objectives/Course Description

 

·       This Course is offered for cadets of NCC who have successfully completed their B- Certificate and Who are eligible for B Certificate.

·       This Course is offered for the NCC cadets in the Open Elective course offered by the department during the 5th Semester.   

Learning Outcome

CO 1: Interpret the fundamentals of NCC and National Integration

CO 2: Demonstrate the fundamentals of Foot drill and Rifle Drill

CO 3: Relate to the Social need and discover Rural development progrms

CO 4: Illustrate the Factors in personality Development through skill enhancement

CO 5: Summarize disasters and summarize various First aid

Unit-1
Teaching Hours:9
Introduction to NCC
 

The NCC- Aims, Objectives and Org of NCC-Incentives-Duties of NCC Cadet- NCC Camps: Types and Conduct. National Integration- Importance and Necessity- Factors affecting National Integration- Unity in Diversity.

Unit-1
Teaching Hours:9
Introduction to NCC
 

The NCC- Aims, Objectives and Org of NCC-Incentives-Duties of NCC Cadet- NCC Camps: Types and Conduct. National Integration- Importance and Necessity- Factors affecting National Integration- Unity in Diversity.

Unit-1
Teaching Hours:9
Introduction to NCC
 

The NCC- Aims, Objectives and Org of NCC-Incentives-Duties of NCC Cadet- NCC Camps: Types and Conduct. National Integration- Importance and Necessity- Factors affecting National Integration- Unity in Diversity.

Unit-1
Teaching Hours:9
Introduction to NCC
 

The NCC- Aims, Objectives and Org of NCC-Incentives-Duties of NCC Cadet- NCC Camps: Types and Conduct. National Integration- Importance and Necessity- Factors affecting National Integration- Unity in Diversity.

Unit-1
Teaching Hours:9
Introduction to NCC
 

The NCC- Aims, Objectives and Org of NCC-Incentives-Duties of NCC Cadet- NCC Camps: Types and Conduct. National Integration- Importance and Necessity- Factors affecting National Integration- Unity in Diversity.

Unit-1
Teaching Hours:9
Introduction to NCC
 

The NCC- Aims, Objectives and Org of NCC-Incentives-Duties of NCC Cadet- NCC Camps: Types and Conduct. National Integration- Importance and Necessity- Factors affecting National Integration- Unity in Diversity.

Unit-1
Teaching Hours:9
Introduction to NCC
 

The NCC- Aims, Objectives and Org of NCC-Incentives-Duties of NCC Cadet- NCC Camps: Types and Conduct. National Integration- Importance and Necessity- Factors affecting National Integration- Unity in Diversity.

Unit-1
Teaching Hours:9
Introduction to NCC
 

The NCC- Aims, Objectives and Org of NCC-Incentives-Duties of NCC Cadet- NCC Camps: Types and Conduct. National Integration- Importance and Necessity- Factors affecting National Integration- Unity in Diversity.

Unit-2
Teaching Hours:9
Drill
 

Fundamentals of Foot Drill- Word of Command-Sizing- Salute- Basic Movements – Marching.

Fundamentals of Rifle Drill - Basic Movements- Introduction to .22 Rifle- Handling of .22 Rifle- Range procedure and Theory of grouping.

Unit-2
Teaching Hours:9
Drill
 

Fundamentals of Foot Drill- Word of Command-Sizing- Salute- Basic Movements – Marching.

Fundamentals of Rifle Drill - Basic Movements- Introduction to .22 Rifle- Handling of .22 Rifle- Range procedure and Theory of grouping.

Unit-2
Teaching Hours:9
Drill
 

Fundamentals of Foot Drill- Word of Command-Sizing- Salute- Basic Movements – Marching.

Fundamentals of Rifle Drill - Basic Movements- Introduction to .22 Rifle- Handling of .22 Rifle- Range procedure and Theory of grouping.

Unit-2
Teaching Hours:9
Drill
 

Fundamentals of Foot Drill- Word of Command-Sizing- Salute- Basic Movements – Marching.

Fundamentals of Rifle Drill - Basic Movements- Introduction to .22 Rifle- Handling of .22 Rifle- Range procedure and Theory of grouping.

Unit-2
Teaching Hours:9
Drill
 

Fundamentals of Foot Drill- Word of Command-Sizing- Salute- Basic Movements – Marching.

Fundamentals of Rifle Drill - Basic Movements- Introduction to .22 Rifle- Handling of .22 Rifle- Range procedure and Theory of grouping.

Unit-2
Teaching Hours:9
Drill
 

Fundamentals of Foot Drill- Word of Command-Sizing- Salute- Basic Movements – Marching.

Fundamentals of Rifle Drill - Basic Movements- Introduction to .22 Rifle- Handling of .22 Rifle- Range procedure and Theory of grouping.

Unit-2
Teaching Hours:9
Drill
 

Fundamentals of Foot Drill- Word of Command-Sizing- Salute- Basic Movements – Marching.

Fundamentals of Rifle Drill - Basic Movements- Introduction to .22 Rifle- Handling of .22 Rifle- Range procedure and Theory of grouping.

Unit-2
Teaching Hours:9
Drill
 

Fundamentals of Foot Drill- Word of Command-Sizing- Salute- Basic Movements – Marching.

Fundamentals of Rifle Drill - Basic Movements- Introduction to .22 Rifle- Handling of .22 Rifle- Range procedure and Theory of grouping.

Unit-3
Teaching Hours:9
Social Services
 

Social Services-Community Development - Swachh Bharat Abhiyan - Social Service Capsule- Basics of Social Service- Rural Development Programmes- NGO’s.

Unit-3
Teaching Hours:9
Social Services
 

Social Services-Community Development - Swachh Bharat Abhiyan - Social Service Capsule- Basics of Social Service- Rural Development Programmes- NGO’s.

Unit-3
Teaching Hours:9
Social Services
 

Social Services-Community Development - Swachh Bharat Abhiyan - Social Service Capsule- Basics of Social Service- Rural Development Programmes- NGO’s.

Unit-3
Teaching Hours:9
Social Services
 

Social Services-Community Development - Swachh Bharat Abhiyan - Social Service Capsule- Basics of Social Service- Rural Development Programmes- NGO’s.

Unit-3
Teaching Hours:9
Social Services
 

Social Services-Community Development - Swachh Bharat Abhiyan - Social Service Capsule- Basics of Social Service- Rural Development Programmes- NGO’s.

Unit-3
Teaching Hours:9
Social Services
 

Social Services-Community Development - Swachh Bharat Abhiyan - Social Service Capsule- Basics of Social Service- Rural Development Programmes- NGO’s.

Unit-3
Teaching Hours:9
Social Services
 

Social Services-Community Development - Swachh Bharat Abhiyan - Social Service Capsule- Basics of Social Service- Rural Development Programmes- NGO’s.

Unit-3
Teaching Hours:9
Social Services
 

Social Services-Community Development - Swachh Bharat Abhiyan - Social Service Capsule- Basics of Social Service- Rural Development Programmes- NGO’s.

Unit-4
Teaching Hours:9
Personality Development
 

Factors in personality Development- Self-Awareness-Empathy - Critical and Creative Thinking - Decision Making and Problem Solving- Communication Skills- Public Speaking- Group Discussions.

Unit-4
Teaching Hours:9
Personality Development
 

Factors in personality Development- Self-Awareness-Empathy - Critical and Creative Thinking - Decision Making and Problem Solving- Communication Skills- Public Speaking- Group Discussions.

Unit-4
Teaching Hours:9
Personality Development
 

Factors in personality Development- Self-Awareness-Empathy - Critical and Creative Thinking - Decision Making and Problem Solving- Communication Skills- Public Speaking- Group Discussions.

Unit-4
Teaching Hours:9
Personality Development
 

Factors in personality Development- Self-Awareness-Empathy - Critical and Creative Thinking - Decision Making and Problem Solving- Communication Skills- Public Speaking- Group Discussions.

Unit-4
Teaching Hours:9
Personality Development
 

Factors in personality Development- Self-Awareness-Empathy - Critical and Creative Thinking - Decision Making and Problem Solving- Communication Skills- Public Speaking- Group Discussions.

Unit-4
Teaching Hours:9
Personality Development
 

Factors in personality Development- Self-Awareness-Empathy - Critical and Creative Thinking - Decision Making and Problem Solving- Communication Skills- Public Speaking- Group Discussions.

Unit-4
Teaching Hours:9
Personality Development
 

Factors in personality Development- Self-Awareness-Empathy - Critical and Creative Thinking - Decision Making and Problem Solving- Communication Skills- Public Speaking- Group Discussions.

Unit-4
Teaching Hours:9
Personality Development
 

Factors in personality Development- Self-Awareness-Empathy - Critical and Creative Thinking - Decision Making and Problem Solving- Communication Skills- Public Speaking- Group Discussions.

Unit-5
Teaching Hours:9
Disaster Management, Health and Hygiene
 

Organization - Types of Disasters - Essential Services Assistance - Civil Defense Organization - Natural Disasters- Man Made Disasters- Firefighting -Hygiene and Sanitation (Personal and Camp)- First Aid in Common Medical Emergencies and Treatment of Wound.

Unit-5
Teaching Hours:9
Disaster Management, Health and Hygiene
 

Organization - Types of Disasters - Essential Services Assistance - Civil Defense Organization - Natural Disasters- Man Made Disasters- Firefighting -Hygiene and Sanitation (Personal and Camp)- First Aid in Common Medical Emergencies and Treatment of Wound.

Unit-5
Teaching Hours:9
Disaster Management, Health and Hygiene
 

Organization - Types of Disasters - Essential Services Assistance - Civil Defense Organization - Natural Disasters- Man Made Disasters- Firefighting -Hygiene and Sanitation (Personal and Camp)- First Aid in Common Medical Emergencies and Treatment of Wound.

Unit-5
Teaching Hours:9
Disaster Management, Health and Hygiene
 

Organization - Types of Disasters - Essential Services Assistance - Civil Defense Organization - Natural Disasters- Man Made Disasters- Firefighting -Hygiene and Sanitation (Personal and Camp)- First Aid in Common Medical Emergencies and Treatment of Wound.

Unit-5
Teaching Hours:9
Disaster Management, Health and Hygiene
 

Organization - Types of Disasters - Essential Services Assistance - Civil Defense Organization - Natural Disasters- Man Made Disasters- Firefighting -Hygiene and Sanitation (Personal and Camp)- First Aid in Common Medical Emergencies and Treatment of Wound.

Unit-5
Teaching Hours:9
Disaster Management, Health and Hygiene
 

Organization - Types of Disasters - Essential Services Assistance - Civil Defense Organization - Natural Disasters- Man Made Disasters- Firefighting -Hygiene and Sanitation (Personal and Camp)- First Aid in Common Medical Emergencies and Treatment of Wound.

Unit-5
Teaching Hours:9
Disaster Management, Health and Hygiene
 

Organization - Types of Disasters - Essential Services Assistance - Civil Defense Organization - Natural Disasters- Man Made Disasters- Firefighting -Hygiene and Sanitation (Personal and Camp)- First Aid in Common Medical Emergencies and Treatment of Wound.

Unit-5
Teaching Hours:9
Disaster Management, Health and Hygiene
 

Organization - Types of Disasters - Essential Services Assistance - Civil Defense Organization - Natural Disasters- Man Made Disasters- Firefighting -Hygiene and Sanitation (Personal and Camp)- First Aid in Common Medical Emergencies and Treatment of Wound.

Text Books And Reference Books:

1.Airwing Cadet Handbook, Specialized Subject SD/SW, Maxwell Press, 2016.

2. Airwing Cadet Handbook, Common Subject SD/SW, Maxwell Press, 2015.

Essential Reading / Recommended Reading

As instructuted by commdant

Evaluation Pattern

The assessment will be carried out as overall internal assessment at the end of the semester for 100 marks based on the following.

·       Each cadet will appear for ‘B’ Certificate exam which is centrally conducted by the Ministry of Defense, NCC directorate. The Total marks will be for 350.  Cadets who are eligible for 'B' Certificate, will be evaluated based on Written Exams(50marks), Contribution to NCC(30marks),Camps(20Marks).

·       Each cadets score will be normalized to a maximum of 100 marks based on the overall marks Secured by each cadet. 

BTGE631 - CORPORATE SOCIAL RESPONSIBILITY (2022 Batch)

Total Teaching Hours for Semester:30
No of Lecture Hours/Week:2
Max Marks:50
Credits:2

Course Objectives/Course Description

 

Course Description:

 

This course will familiarize the students with the concept of corporate social responsibility. The evolution of CSR has far reaching consequences on the development sector in India. The collaboration of companies and NGOs with the community has initiated a new paradigm of change in the country. The students will have an overview of the theories and the frameworks developed in the area of CSR. The paper will discuss a few prominent case studies of CSR.

 Course Objectives 

  • To understand the concept of CSR and the theoretical underpinnings.

  • To understand the stakeholder approaches.

  • To provide an experiential, integrative, substantive, and high quality experience surrounding issues of Corporate Social Responsibility

  • To provide participating students with a truly unique curriculum experience with field experience.

Learning Outcome

CO1: The students will be able to demonstrate their understanding in general on CSR.

CO2: To exhibit their skill in executing the responsibilities and implementing different approaches in CSR.

CO3: The students will be able to critically evaluate the CSR programs of a corporate

Unit-1
Teaching Hours:10
Corporate social responsibility
 

Concept, definition and objectives of CSR, Scope of CSR, Need and Significance of CSR, History and Evolution of CSR in the Indian and international context, Principles of CSR. Arguments for and against CSR, Globalization and CSR. Section 135 of the Companies Act, National Guidelines on Responsible Business Conduct, Formulation of CSR policy.

Unit-1
Teaching Hours:10
Corporate social responsibility
 

Concept, definition and objectives of CSR, Scope of CSR, Need and Significance of CSR, History and Evolution of CSR in the Indian and international context, Principles of CSR. Arguments for and against CSR, Globalization and CSR. Section 135 of the Companies Act, National Guidelines on Responsible Business Conduct, Formulation of CSR policy.

Unit-1
Teaching Hours:10
Corporate social responsibility
 

Concept, definition and objectives of CSR, Scope of CSR, Need and Significance of CSR, History and Evolution of CSR in the Indian and international context, Principles of CSR. Arguments for and against CSR, Globalization and CSR. Section 135 of the Companies Act, National Guidelines on Responsible Business Conduct, Formulation of CSR policy.

Unit-1
Teaching Hours:10
Corporate social responsibility
 

Concept, definition and objectives of CSR, Scope of CSR, Need and Significance of CSR, History and Evolution of CSR in the Indian and international context, Principles of CSR. Arguments for and against CSR, Globalization and CSR. Section 135 of the Companies Act, National Guidelines on Responsible Business Conduct, Formulation of CSR policy.

Unit-1
Teaching Hours:10
Corporate social responsibility
 

Concept, definition and objectives of CSR, Scope of CSR, Need and Significance of CSR, History and Evolution of CSR in the Indian and international context, Principles of CSR. Arguments for and against CSR, Globalization and CSR. Section 135 of the Companies Act, National Guidelines on Responsible Business Conduct, Formulation of CSR policy.

Unit-1
Teaching Hours:10
Corporate social responsibility
 

Concept, definition and objectives of CSR, Scope of CSR, Need and Significance of CSR, History and Evolution of CSR in the Indian and international context, Principles of CSR. Arguments for and against CSR, Globalization and CSR. Section 135 of the Companies Act, National Guidelines on Responsible Business Conduct, Formulation of CSR policy.

Unit-1
Teaching Hours:10
Corporate social responsibility
 

Concept, definition and objectives of CSR, Scope of CSR, Need and Significance of CSR, History and Evolution of CSR in the Indian and international context, Principles of CSR. Arguments for and against CSR, Globalization and CSR. Section 135 of the Companies Act, National Guidelines on Responsible Business Conduct, Formulation of CSR policy.

Unit-1
Teaching Hours:10
Corporate social responsibility
 

Concept, definition and objectives of CSR, Scope of CSR, Need and Significance of CSR, History and Evolution of CSR in the Indian and international context, Principles of CSR. Arguments for and against CSR, Globalization and CSR. Section 135 of the Companies Act, National Guidelines on Responsible Business Conduct, Formulation of CSR policy.

Unit-1
Teaching Hours:10
Corporate social responsibility
 

Concept, definition and objectives of CSR, Scope of CSR, Need and Significance of CSR, History and Evolution of CSR in the Indian and international context, Principles of CSR. Arguments for and against CSR, Globalization and CSR. Section 135 of the Companies Act, National Guidelines on Responsible Business Conduct, Formulation of CSR policy.

Unit-1
Teaching Hours:10
Corporate social responsibility
 

Concept, definition and objectives of CSR, Scope of CSR, Need and Significance of CSR, History and Evolution of CSR in the Indian and international context, Principles of CSR. Arguments for and against CSR, Globalization and CSR. Section 135 of the Companies Act, National Guidelines on Responsible Business Conduct, Formulation of CSR policy.

Unit-1
Teaching Hours:10
Corporate social responsibility
 

Concept, definition and objectives of CSR, Scope of CSR, Need and Significance of CSR, History and Evolution of CSR in the Indian and international context, Principles of CSR. Arguments for and against CSR, Globalization and CSR. Section 135 of the Companies Act, National Guidelines on Responsible Business Conduct, Formulation of CSR policy.

Unit-1
Teaching Hours:10
Corporate social responsibility
 

Concept, definition and objectives of CSR, Scope of CSR, Need and Significance of CSR, History and Evolution of CSR in the Indian and international context, Principles of CSR. Arguments for and against CSR, Globalization and CSR. Section 135 of the Companies Act, National Guidelines on Responsible Business Conduct, Formulation of CSR policy.

Unit-1
Teaching Hours:10
Corporate social responsibility
 

Concept, definition and objectives of CSR, Scope of CSR, Need and Significance of CSR, History and Evolution of CSR in the Indian and international context, Principles of CSR. Arguments for and against CSR, Globalization and CSR. Section 135 of the Companies Act, National Guidelines on Responsible Business Conduct, Formulation of CSR policy.

Unit-1
Teaching Hours:10
Corporate social responsibility
 

Concept, definition and objectives of CSR, Scope of CSR, Need and Significance of CSR, History and Evolution of CSR in the Indian and international context, Principles of CSR. Arguments for and against CSR, Globalization and CSR. Section 135 of the Companies Act, National Guidelines on Responsible Business Conduct, Formulation of CSR policy.

Unit-2
Teaching Hours:10
Theories of CSR
 

A.B Carroll, Wood, and stake holders Theories. The triple bottom line approach. Social Accounting, Social Auditing, International Standards: ISO 14000, ISO 26000, SA 8000, AA1000.  Partnerships in CSR, Benefits of CSR to Business.

Unit-2
Teaching Hours:10
Theories of CSR
 

A.B Carroll, Wood, and stake holders Theories. The triple bottom line approach. Social Accounting, Social Auditing, International Standards: ISO 14000, ISO 26000, SA 8000, AA1000.  Partnerships in CSR, Benefits of CSR to Business.

Unit-2
Teaching Hours:10
Theories of CSR
 

A.B Carroll, Wood, and stake holders Theories. The triple bottom line approach. Social Accounting, Social Auditing, International Standards: ISO 14000, ISO 26000, SA 8000, AA1000.  Partnerships in CSR, Benefits of CSR to Business.

Unit-2
Teaching Hours:10
Theories of CSR
 

A.B Carroll, Wood, and stake holders Theories. The triple bottom line approach. Social Accounting, Social Auditing, International Standards: ISO 14000, ISO 26000, SA 8000, AA1000.  Partnerships in CSR, Benefits of CSR to Business.

Unit-2
Teaching Hours:10
Theories of CSR
 

A.B Carroll, Wood, and stake holders Theories. The triple bottom line approach. Social Accounting, Social Auditing, International Standards: ISO 14000, ISO 26000, SA 8000, AA1000.  Partnerships in CSR, Benefits of CSR to Business.

Unit-2
Teaching Hours:10
Theories of CSR
 

A.B Carroll, Wood, and stake holders Theories. The triple bottom line approach. Social Accounting, Social Auditing, International Standards: ISO 14000, ISO 26000, SA 8000, AA1000.  Partnerships in CSR, Benefits of CSR to Business.

Unit-2
Teaching Hours:10
Theories of CSR
 

A.B Carroll, Wood, and stake holders Theories. The triple bottom line approach. Social Accounting, Social Auditing, International Standards: ISO 14000, ISO 26000, SA 8000, AA1000.  Partnerships in CSR, Benefits of CSR to Business.

Unit-2
Teaching Hours:10
Theories of CSR
 

A.B Carroll, Wood, and stake holders Theories. The triple bottom line approach. Social Accounting, Social Auditing, International Standards: ISO 14000, ISO 26000, SA 8000, AA1000.  Partnerships in CSR, Benefits of CSR to Business.

Unit-2
Teaching Hours:10
Theories of CSR
 

A.B Carroll, Wood, and stake holders Theories. The triple bottom line approach. Social Accounting, Social Auditing, International Standards: ISO 14000, ISO 26000, SA 8000, AA1000.  Partnerships in CSR, Benefits of CSR to Business.

Unit-2
Teaching Hours:10
Theories of CSR
 

A.B Carroll, Wood, and stake holders Theories. The triple bottom line approach. Social Accounting, Social Auditing, International Standards: ISO 14000, ISO 26000, SA 8000, AA1000.  Partnerships in CSR, Benefits of CSR to Business.

Unit-2
Teaching Hours:10
Theories of CSR
 

A.B Carroll, Wood, and stake holders Theories. The triple bottom line approach. Social Accounting, Social Auditing, International Standards: ISO 14000, ISO 26000, SA 8000, AA1000.  Partnerships in CSR, Benefits of CSR to Business.

Unit-2
Teaching Hours:10
Theories of CSR
 

A.B Carroll, Wood, and stake holders Theories. The triple bottom line approach. Social Accounting, Social Auditing, International Standards: ISO 14000, ISO 26000, SA 8000, AA1000.  Partnerships in CSR, Benefits of CSR to Business.

Unit-2
Teaching Hours:10
Theories of CSR
 

A.B Carroll, Wood, and stake holders Theories. The triple bottom line approach. Social Accounting, Social Auditing, International Standards: ISO 14000, ISO 26000, SA 8000, AA1000.  Partnerships in CSR, Benefits of CSR to Business.

Unit-2
Teaching Hours:10
Theories of CSR
 

A.B Carroll, Wood, and stake holders Theories. The triple bottom line approach. Social Accounting, Social Auditing, International Standards: ISO 14000, ISO 26000, SA 8000, AA1000.  Partnerships in CSR, Benefits of CSR to Business.

Unit-3
Teaching Hours:10
Emerging trends in CSR
 

Social Entrepreneurship, Product Stewardship, Water Stewardship, E- wastes, Climate change and CSR. Essential skills for CSR Professionals.

 

Unit-3
Teaching Hours:10
Emerging trends in CSR
 

Social Entrepreneurship, Product Stewardship, Water Stewardship, E- wastes, Climate change and CSR. Essential skills for CSR Professionals.

 

Unit-3
Teaching Hours:10
Emerging trends in CSR
 

Social Entrepreneurship, Product Stewardship, Water Stewardship, E- wastes, Climate change and CSR. Essential skills for CSR Professionals.

 

Unit-3
Teaching Hours:10
Emerging trends in CSR
 

Social Entrepreneurship, Product Stewardship, Water Stewardship, E- wastes, Climate change and CSR. Essential skills for CSR Professionals.

 

Unit-3
Teaching Hours:10
Emerging trends in CSR
 

Social Entrepreneurship, Product Stewardship, Water Stewardship, E- wastes, Climate change and CSR. Essential skills for CSR Professionals.

 

Unit-3
Teaching Hours:10
Emerging trends in CSR
 

Social Entrepreneurship, Product Stewardship, Water Stewardship, E- wastes, Climate change and CSR. Essential skills for CSR Professionals.

 

Unit-3
Teaching Hours:10
Emerging trends in CSR
 

Social Entrepreneurship, Product Stewardship, Water Stewardship, E- wastes, Climate change and CSR. Essential skills for CSR Professionals.

 

Unit-3
Teaching Hours:10
Emerging trends in CSR
 

Social Entrepreneurship, Product Stewardship, Water Stewardship, E- wastes, Climate change and CSR. Essential skills for CSR Professionals.

 

Unit-3
Teaching Hours:10
Emerging trends in CSR
 

Social Entrepreneurship, Product Stewardship, Water Stewardship, E- wastes, Climate change and CSR. Essential skills for CSR Professionals.

 

Unit-3
Teaching Hours:10
Emerging trends in CSR
 

Social Entrepreneurship, Product Stewardship, Water Stewardship, E- wastes, Climate change and CSR. Essential skills for CSR Professionals.

 

Unit-3
Teaching Hours:10
Emerging trends in CSR
 

Social Entrepreneurship, Product Stewardship, Water Stewardship, E- wastes, Climate change and CSR. Essential skills for CSR Professionals.

 

Unit-3
Teaching Hours:10
Emerging trends in CSR
 

Social Entrepreneurship, Product Stewardship, Water Stewardship, E- wastes, Climate change and CSR. Essential skills for CSR Professionals.

 

Unit-3
Teaching Hours:10
Emerging trends in CSR
 

Social Entrepreneurship, Product Stewardship, Water Stewardship, E- wastes, Climate change and CSR. Essential skills for CSR Professionals.

 

Unit-3
Teaching Hours:10
Emerging trends in CSR
 

Social Entrepreneurship, Product Stewardship, Water Stewardship, E- wastes, Climate change and CSR. Essential skills for CSR Professionals.

 

Text Books And Reference Books:

T1. Agarwal, S. (2008). Corporate social responsibility in India. Los Angeles: Response.

T2. Visser, W. (2007). The A to Z of corporate social responsibility a complete reference guide to concepts, codes and organizations. Chichester, England: John Wiley & Sons.

T3. Werther, W., & Chandler, D. (2006). Strategic corporate social responsibility: Stakeholders in a global environment. Thousand Oaks: SAGE Publications.

Essential Reading / Recommended Reading

R1. Crane, A. (2008). Corporate social responsibility: Readings and cases in a global context. London: Routledge.

R2. Baxi, C. (2005). Corporate social responsibility: Concepts and cases: The Indian experience. New Delhi, India: Excel Books.

Online Resources:

M1. https://www.coursera.org/learn/global-sustainability-be-sustainable

M2. https://www.coursera.org/learn/business-for-good-fundamentals-of-corporate-responsibility

Evaluation Pattern
  • CIA 1 - 20 Marks
  • CIA 2 - 50 Marks 
  • CIA 3 - 20 marks
  • ESE - 50 marks
  • Attendance – 5 Marks 
  • (Scaled: CIA – 25 Marks & ESE – 25 Marks)

 

BTGE632 - DIGITAL MEDIA (2022 Batch)

Total Teaching Hours for Semester:30
No of Lecture Hours/Week:2
Max Marks:100
Credits:2

Course Objectives/Course Description

 

This course provides students the insight on search engine optimization, social media and digital marketing techniques that helps them understand how each of the social media platforms works and how to strategize for any type of objectives from clients. Students will discover the potential of digital media space and will have hands on experience with different digital platforms.

Learning Outcome

CO1: Understand search engine optimization (SEO) techniques and principles.

CO2: Gain expertise in managing and marketing on various social media platforms.

CO3: Apply digital marketing techniques to achieve specific business objectives.

Unit-1
Teaching Hours:10
Concepts
 

Website Hosting/Design/Development/Content, Fundamentals of SEO, Voice Search Optimization, Local SEO, Advanced/Technical SEO, SEO Audit, Competition Analysis, Concepts of Digital Marketing

Unit-1
Teaching Hours:10
Concepts
 

Website Hosting/Design/Development/Content, Fundamentals of SEO, Voice Search Optimization, Local SEO, Advanced/Technical SEO, SEO Audit, Competition Analysis, Concepts of Digital Marketing

Unit-1
Teaching Hours:10
Concepts
 

Website Hosting/Design/Development/Content, Fundamentals of SEO, Voice Search Optimization, Local SEO, Advanced/Technical SEO, SEO Audit, Competition Analysis, Concepts of Digital Marketing

Unit-1
Teaching Hours:10
Concepts
 

Website Hosting/Design/Development/Content, Fundamentals of SEO, Voice Search Optimization, Local SEO, Advanced/Technical SEO, SEO Audit, Competition Analysis, Concepts of Digital Marketing

Unit-1
Teaching Hours:10
Concepts
 

Website Hosting/Design/Development/Content, Fundamentals of SEO, Voice Search Optimization, Local SEO, Advanced/Technical SEO, SEO Audit, Competition Analysis, Concepts of Digital Marketing

Unit-1
Teaching Hours:10
Concepts
 

Website Hosting/Design/Development/Content, Fundamentals of SEO, Voice Search Optimization, Local SEO, Advanced/Technical SEO, SEO Audit, Competition Analysis, Concepts of Digital Marketing

Unit-1
Teaching Hours:10
Concepts
 

Website Hosting/Design/Development/Content, Fundamentals of SEO, Voice Search Optimization, Local SEO, Advanced/Technical SEO, SEO Audit, Competition Analysis, Concepts of Digital Marketing

Unit-1
Teaching Hours:10
Concepts
 

Website Hosting/Design/Development/Content, Fundamentals of SEO, Voice Search Optimization, Local SEO, Advanced/Technical SEO, SEO Audit, Competition Analysis, Concepts of Digital Marketing

Unit-1
Teaching Hours:10
Concepts
 

Website Hosting/Design/Development/Content, Fundamentals of SEO, Voice Search Optimization, Local SEO, Advanced/Technical SEO, SEO Audit, Competition Analysis, Concepts of Digital Marketing

Unit-1
Teaching Hours:10
Concepts
 

Website Hosting/Design/Development/Content, Fundamentals of SEO, Voice Search Optimization, Local SEO, Advanced/Technical SEO, SEO Audit, Competition Analysis, Concepts of Digital Marketing

Unit-1
Teaching Hours:10
Concepts
 

Website Hosting/Design/Development/Content, Fundamentals of SEO, Voice Search Optimization, Local SEO, Advanced/Technical SEO, SEO Audit, Competition Analysis, Concepts of Digital Marketing

Unit-1
Teaching Hours:10
Concepts
 

Website Hosting/Design/Development/Content, Fundamentals of SEO, Voice Search Optimization, Local SEO, Advanced/Technical SEO, SEO Audit, Competition Analysis, Concepts of Digital Marketing

Unit-1
Teaching Hours:10
Concepts
 

Website Hosting/Design/Development/Content, Fundamentals of SEO, Voice Search Optimization, Local SEO, Advanced/Technical SEO, SEO Audit, Competition Analysis, Concepts of Digital Marketing

Unit-1
Teaching Hours:10
Concepts
 

Website Hosting/Design/Development/Content, Fundamentals of SEO, Voice Search Optimization, Local SEO, Advanced/Technical SEO, SEO Audit, Competition Analysis, Concepts of Digital Marketing

Unit-2
Teaching Hours:10
Marketing
 

Marketing on platforms – Facebook/Twitter/LinkedIn/Instagram/YouTube, Quora, Basics of Video Editing, Inbound Marketing, Email Marketing, Digital Marketing Planning and Strategy, Marketing Automations and Tools

Unit-2
Teaching Hours:10
Marketing
 

Marketing on platforms – Facebook/Twitter/LinkedIn/Instagram/YouTube, Quora, Basics of Video Editing, Inbound Marketing, Email Marketing, Digital Marketing Planning and Strategy, Marketing Automations and Tools

Unit-2
Teaching Hours:10
Marketing
 

Marketing on platforms – Facebook/Twitter/LinkedIn/Instagram/YouTube, Quora, Basics of Video Editing, Inbound Marketing, Email Marketing, Digital Marketing Planning and Strategy, Marketing Automations and Tools

Unit-2
Teaching Hours:10
Marketing
 

Marketing on platforms – Facebook/Twitter/LinkedIn/Instagram/YouTube, Quora, Basics of Video Editing, Inbound Marketing, Email Marketing, Digital Marketing Planning and Strategy, Marketing Automations and Tools

Unit-2
Teaching Hours:10
Marketing
 

Marketing on platforms – Facebook/Twitter/LinkedIn/Instagram/YouTube, Quora, Basics of Video Editing, Inbound Marketing, Email Marketing, Digital Marketing Planning and Strategy, Marketing Automations and Tools

Unit-2
Teaching Hours:10
Marketing
 

Marketing on platforms – Facebook/Twitter/LinkedIn/Instagram/YouTube, Quora, Basics of Video Editing, Inbound Marketing, Email Marketing, Digital Marketing Planning and Strategy, Marketing Automations and Tools

Unit-2
Teaching Hours:10
Marketing
 

Marketing on platforms – Facebook/Twitter/LinkedIn/Instagram/YouTube, Quora, Basics of Video Editing, Inbound Marketing, Email Marketing, Digital Marketing Planning and Strategy, Marketing Automations and Tools

Unit-2
Teaching Hours:10
Marketing
 

Marketing on platforms – Facebook/Twitter/LinkedIn/Instagram/YouTube, Quora, Basics of Video Editing, Inbound Marketing, Email Marketing, Digital Marketing Planning and Strategy, Marketing Automations and Tools

Unit-2
Teaching Hours:10
Marketing
 

Marketing on platforms – Facebook/Twitter/LinkedIn/Instagram/YouTube, Quora, Basics of Video Editing, Inbound Marketing, Email Marketing, Digital Marketing Planning and Strategy, Marketing Automations and Tools

Unit-2
Teaching Hours:10
Marketing
 

Marketing on platforms – Facebook/Twitter/LinkedIn/Instagram/YouTube, Quora, Basics of Video Editing, Inbound Marketing, Email Marketing, Digital Marketing Planning and Strategy, Marketing Automations and Tools

Unit-2
Teaching Hours:10
Marketing
 

Marketing on platforms – Facebook/Twitter/LinkedIn/Instagram/YouTube, Quora, Basics of Video Editing, Inbound Marketing, Email Marketing, Digital Marketing Planning and Strategy, Marketing Automations and Tools

Unit-2
Teaching Hours:10
Marketing
 

Marketing on platforms – Facebook/Twitter/LinkedIn/Instagram/YouTube, Quora, Basics of Video Editing, Inbound Marketing, Email Marketing, Digital Marketing Planning and Strategy, Marketing Automations and Tools

Unit-2
Teaching Hours:10
Marketing
 

Marketing on platforms – Facebook/Twitter/LinkedIn/Instagram/YouTube, Quora, Basics of Video Editing, Inbound Marketing, Email Marketing, Digital Marketing Planning and Strategy, Marketing Automations and Tools

Unit-2
Teaching Hours:10
Marketing
 

Marketing on platforms – Facebook/Twitter/LinkedIn/Instagram/YouTube, Quora, Basics of Video Editing, Inbound Marketing, Email Marketing, Digital Marketing Planning and Strategy, Marketing Automations and Tools

Unit-3
Teaching Hours:10
Growth Hacking
 

Ethical vs. Unethical, Funnels, KPI’s, Viral Coefficient, Cohorts, Segments, Multivariate Testing, Lifetime Value of a Customer, Customer Acquisition Cost, Analytics Types, Tools, Project

Unit-3
Teaching Hours:10
Growth Hacking
 

Ethical vs. Unethical, Funnels, KPI’s, Viral Coefficient, Cohorts, Segments, Multivariate Testing, Lifetime Value of a Customer, Customer Acquisition Cost, Analytics Types, Tools, Project

Unit-3
Teaching Hours:10
Growth Hacking
 

Ethical vs. Unethical, Funnels, KPI’s, Viral Coefficient, Cohorts, Segments, Multivariate Testing, Lifetime Value of a Customer, Customer Acquisition Cost, Analytics Types, Tools, Project

Unit-3
Teaching Hours:10
Growth Hacking
 

Ethical vs. Unethical, Funnels, KPI’s, Viral Coefficient, Cohorts, Segments, Multivariate Testing, Lifetime Value of a Customer, Customer Acquisition Cost, Analytics Types, Tools, Project

Unit-3
Teaching Hours:10
Growth Hacking
 

Ethical vs. Unethical, Funnels, KPI’s, Viral Coefficient, Cohorts, Segments, Multivariate Testing, Lifetime Value of a Customer, Customer Acquisition Cost, Analytics Types, Tools, Project

Unit-3
Teaching Hours:10
Growth Hacking
 

Ethical vs. Unethical, Funnels, KPI’s, Viral Coefficient, Cohorts, Segments, Multivariate Testing, Lifetime Value of a Customer, Customer Acquisition Cost, Analytics Types, Tools, Project

Unit-3
Teaching Hours:10
Growth Hacking
 

Ethical vs. Unethical, Funnels, KPI’s, Viral Coefficient, Cohorts, Segments, Multivariate Testing, Lifetime Value of a Customer, Customer Acquisition Cost, Analytics Types, Tools, Project

Unit-3
Teaching Hours:10
Growth Hacking
 

Ethical vs. Unethical, Funnels, KPI’s, Viral Coefficient, Cohorts, Segments, Multivariate Testing, Lifetime Value of a Customer, Customer Acquisition Cost, Analytics Types, Tools, Project

Unit-3
Teaching Hours:10
Growth Hacking
 

Ethical vs. Unethical, Funnels, KPI’s, Viral Coefficient, Cohorts, Segments, Multivariate Testing, Lifetime Value of a Customer, Customer Acquisition Cost, Analytics Types, Tools, Project

Unit-3
Teaching Hours:10
Growth Hacking
 

Ethical vs. Unethical, Funnels, KPI’s, Viral Coefficient, Cohorts, Segments, Multivariate Testing, Lifetime Value of a Customer, Customer Acquisition Cost, Analytics Types, Tools, Project

Unit-3
Teaching Hours:10
Growth Hacking
 

Ethical vs. Unethical, Funnels, KPI’s, Viral Coefficient, Cohorts, Segments, Multivariate Testing, Lifetime Value of a Customer, Customer Acquisition Cost, Analytics Types, Tools, Project

Unit-3
Teaching Hours:10
Growth Hacking
 

Ethical vs. Unethical, Funnels, KPI’s, Viral Coefficient, Cohorts, Segments, Multivariate Testing, Lifetime Value of a Customer, Customer Acquisition Cost, Analytics Types, Tools, Project

Unit-3
Teaching Hours:10
Growth Hacking
 

Ethical vs. Unethical, Funnels, KPI’s, Viral Coefficient, Cohorts, Segments, Multivariate Testing, Lifetime Value of a Customer, Customer Acquisition Cost, Analytics Types, Tools, Project

Unit-3
Teaching Hours:10
Growth Hacking
 

Ethical vs. Unethical, Funnels, KPI’s, Viral Coefficient, Cohorts, Segments, Multivariate Testing, Lifetime Value of a Customer, Customer Acquisition Cost, Analytics Types, Tools, Project

Text Books And Reference Books:

Phillip J. Windley, "Digital Identity" O'Reilly Media, 2005

Essential Reading / Recommended Reading

Dan Rayburn, Michael Hoch, "The Business of Streaming and Digital Media", Focal Press, 2005

Evaluation Pattern
  • CIA 1 - Evaluated out of 20, which will be converted to 10
  • CIA 2 - Mid Semester Exam evaluated out of 50, which will be converted to 25
  • CIA 3 - Evaluated out of 20, which will be converted to 10
  • Total CIA Marks after conversion - 45
  • Attendance Marks - 5
  • ESE Evaluated out of 100, which will be converted to 50
  • Total Marks = CIA (Total) + ESE + Attendance = 45 + 50 + 5 = 100

 

BTGE633 - ESSENTIAL SOFT SKILLS FOR PROFESSIONAL SUCCESS (2022 Batch)

Total Teaching Hours for Semester:30
No of Lecture Hours/Week:2
Max Marks:50
Credits:2

Course Objectives/Course Description

 

Course description: Essential Soft Skills for Professional Success consists of five units covering; Effective Communication for Personality, Critical Thinking for Problem Solving, Adaptability and Team Work, Time Management and Leadership skills, Empathy, Resilience and Stress Management. They will be explained followed by tasks/activities/case studies to strengthen the soft skills of the learners to develop their personality suitable for professional contexts.

Course objectives: Course is designed to equip the learners with essential soft skills to ensure the necessary enrichment in the personality that contributes for professional and personal success.

Learning Outcome

CO1: Identify the difference between communication and effective communication and communicate effectively, efficiently and professionally.

CO2: Use their critical thinking skills to solve complex problems in the professional and personal contexts.

CO3: Adapt to new challenges, situations, tools, projects, be active in teams and collaborate with intra and inter disciplinary experts for professional success.

CO4: Effectively manage time, guide, inspire and lead the members of the teams productively and successfully.

CO5: Be empathetic towards colleagues, clients; resilient to the professional challenges and manage stress in the professional and personal contexts.

Unit-1
Teaching Hours:6
Effective Communication Skills for Personality
 

- Role of Effective communication skills for personality
- To manage/motivate and lead teams
- Need of clear and effective communication;

  • to convey vital information effectively
  • to collaborate, and interact with clients 
  • to convey technical concepts to non-technical stakeholders

 

Unit-1
Teaching Hours:6
Effective Communication Skills for Personality
 

- Role of Effective communication skills for personality
- To manage/motivate and lead teams
- Need of clear and effective communication;

  • to convey vital information effectively
  • to collaborate, and interact with clients 
  • to convey technical concepts to non-technical stakeholders

 

Unit-1
Teaching Hours:6
Effective Communication Skills for Personality
 

- Role of Effective communication skills for personality
- To manage/motivate and lead teams
- Need of clear and effective communication;

  • to convey vital information effectively
  • to collaborate, and interact with clients 
  • to convey technical concepts to non-technical stakeholders

 

Unit-1
Teaching Hours:6
Effective Communication Skills for Personality
 

- Role of Effective communication skills for personality
- To manage/motivate and lead teams
- Need of clear and effective communication;

  • to convey vital information effectively
  • to collaborate, and interact with clients 
  • to convey technical concepts to non-technical stakeholders

 

Unit-1
Teaching Hours:6
Effective Communication Skills for Personality
 

- Role of Effective communication skills for personality
- To manage/motivate and lead teams
- Need of clear and effective communication;

  • to convey vital information effectively
  • to collaborate, and interact with clients 
  • to convey technical concepts to non-technical stakeholders

 

Unit-1
Teaching Hours:6
Effective Communication Skills for Personality
 

- Role of Effective communication skills for personality
- To manage/motivate and lead teams
- Need of clear and effective communication;

  • to convey vital information effectively
  • to collaborate, and interact with clients 
  • to convey technical concepts to non-technical stakeholders

 

Unit-1
Teaching Hours:6
Effective Communication Skills for Personality
 

- Role of Effective communication skills for personality
- To manage/motivate and lead teams
- Need of clear and effective communication;

  • to convey vital information effectively
  • to collaborate, and interact with clients 
  • to convey technical concepts to non-technical stakeholders

 

Unit-1
Teaching Hours:6
Effective Communication Skills for Personality
 

- Role of Effective communication skills for personality
- To manage/motivate and lead teams
- Need of clear and effective communication;

  • to convey vital information effectively
  • to collaborate, and interact with clients 
  • to convey technical concepts to non-technical stakeholders

 

Unit-1
Teaching Hours:6
Effective Communication Skills for Personality
 

- Role of Effective communication skills for personality
- To manage/motivate and lead teams
- Need of clear and effective communication;

  • to convey vital information effectively
  • to collaborate, and interact with clients 
  • to convey technical concepts to non-technical stakeholders

 

Unit-1
Teaching Hours:6
Effective Communication Skills for Personality
 

- Role of Effective communication skills for personality
- To manage/motivate and lead teams
- Need of clear and effective communication;

  • to convey vital information effectively
  • to collaborate, and interact with clients 
  • to convey technical concepts to non-technical stakeholders

 

Unit-1
Teaching Hours:6
Effective Communication Skills for Personality
 

- Role of Effective communication skills for personality
- To manage/motivate and lead teams
- Need of clear and effective communication;

  • to convey vital information effectively
  • to collaborate, and interact with clients 
  • to convey technical concepts to non-technical stakeholders

 

Unit-1
Teaching Hours:6
Effective Communication Skills for Personality
 

- Role of Effective communication skills for personality
- To manage/motivate and lead teams
- Need of clear and effective communication;

  • to convey vital information effectively
  • to collaborate, and interact with clients 
  • to convey technical concepts to non-technical stakeholders

 

Unit-1
Teaching Hours:6
Effective Communication Skills for Personality
 

- Role of Effective communication skills for personality
- To manage/motivate and lead teams
- Need of clear and effective communication;

  • to convey vital information effectively
  • to collaborate, and interact with clients 
  • to convey technical concepts to non-technical stakeholders

 

Unit-1
Teaching Hours:6
Effective Communication Skills for Personality
 

- Role of Effective communication skills for personality
- To manage/motivate and lead teams
- Need of clear and effective communication;

  • to convey vital information effectively
  • to collaborate, and interact with clients 
  • to convey technical concepts to non-technical stakeholders

 

Unit-2
Teaching Hours:6
Critical Thinking for Problem Solving
 

- Critically evaluate information  
- Identify potential issues
- The ability to identify problems
- Analyze complex problems 
- Pay attention to small details to solve problems efficiently

Unit-2
Teaching Hours:6
Critical Thinking for Problem Solving
 

- Critically evaluate information  
- Identify potential issues
- The ability to identify problems
- Analyze complex problems 
- Pay attention to small details to solve problems efficiently

Unit-2
Teaching Hours:6
Critical Thinking for Problem Solving
 

- Critically evaluate information  
- Identify potential issues
- The ability to identify problems
- Analyze complex problems 
- Pay attention to small details to solve problems efficiently

Unit-2
Teaching Hours:6
Critical Thinking for Problem Solving
 

- Critically evaluate information  
- Identify potential issues
- The ability to identify problems
- Analyze complex problems 
- Pay attention to small details to solve problems efficiently

Unit-2
Teaching Hours:6
Critical Thinking for Problem Solving
 

- Critically evaluate information  
- Identify potential issues
- The ability to identify problems
- Analyze complex problems 
- Pay attention to small details to solve problems efficiently

Unit-2
Teaching Hours:6
Critical Thinking for Problem Solving
 

- Critically evaluate information  
- Identify potential issues
- The ability to identify problems
- Analyze complex problems 
- Pay attention to small details to solve problems efficiently

Unit-2
Teaching Hours:6
Critical Thinking for Problem Solving
 

- Critically evaluate information  
- Identify potential issues
- The ability to identify problems
- Analyze complex problems 
- Pay attention to small details to solve problems efficiently

Unit-2
Teaching Hours:6
Critical Thinking for Problem Solving
 

- Critically evaluate information  
- Identify potential issues
- The ability to identify problems
- Analyze complex problems 
- Pay attention to small details to solve problems efficiently

Unit-2
Teaching Hours:6
Critical Thinking for Problem Solving
 

- Critically evaluate information  
- Identify potential issues
- The ability to identify problems
- Analyze complex problems 
- Pay attention to small details to solve problems efficiently

Unit-2
Teaching Hours:6
Critical Thinking for Problem Solving
 

- Critically evaluate information  
- Identify potential issues
- The ability to identify problems
- Analyze complex problems 
- Pay attention to small details to solve problems efficiently

Unit-2
Teaching Hours:6
Critical Thinking for Problem Solving
 

- Critically evaluate information  
- Identify potential issues
- The ability to identify problems
- Analyze complex problems 
- Pay attention to small details to solve problems efficiently

Unit-2
Teaching Hours:6
Critical Thinking for Problem Solving
 

- Critically evaluate information  
- Identify potential issues
- The ability to identify problems
- Analyze complex problems 
- Pay attention to small details to solve problems efficiently

Unit-2
Teaching Hours:6
Critical Thinking for Problem Solving
 

- Critically evaluate information  
- Identify potential issues
- The ability to identify problems
- Analyze complex problems 
- Pay attention to small details to solve problems efficiently

Unit-2
Teaching Hours:6
Critical Thinking for Problem Solving
 

- Critically evaluate information  
- Identify potential issues
- The ability to identify problems
- Analyze complex problems 
- Pay attention to small details to solve problems efficiently

Unit-3
Teaching Hours:6
Adaptability and Team Work
 

- Adapt to new tools, methodologies
- Cope with new situations and challenges quickly
- Active in a team for successful team work 
- Collaborating  with intra and inter disciplinary experts.

Unit-3
Teaching Hours:6
Adaptability and Team Work
 

- Adapt to new tools, methodologies
- Cope with new situations and challenges quickly
- Active in a team for successful team work 
- Collaborating  with intra and inter disciplinary experts.

Unit-3
Teaching Hours:6
Adaptability and Team Work
 

- Adapt to new tools, methodologies
- Cope with new situations and challenges quickly
- Active in a team for successful team work 
- Collaborating  with intra and inter disciplinary experts.

Unit-3
Teaching Hours:6
Adaptability and Team Work
 

- Adapt to new tools, methodologies
- Cope with new situations and challenges quickly
- Active in a team for successful team work 
- Collaborating  with intra and inter disciplinary experts.

Unit-3
Teaching Hours:6
Adaptability and Team Work
 

- Adapt to new tools, methodologies
- Cope with new situations and challenges quickly
- Active in a team for successful team work 
- Collaborating  with intra and inter disciplinary experts.

Unit-3
Teaching Hours:6
Adaptability and Team Work
 

- Adapt to new tools, methodologies
- Cope with new situations and challenges quickly
- Active in a team for successful team work 
- Collaborating  with intra and inter disciplinary experts.

Unit-3
Teaching Hours:6
Adaptability and Team Work
 

- Adapt to new tools, methodologies
- Cope with new situations and challenges quickly
- Active in a team for successful team work 
- Collaborating  with intra and inter disciplinary experts.

Unit-3
Teaching Hours:6
Adaptability and Team Work
 

- Adapt to new tools, methodologies
- Cope with new situations and challenges quickly
- Active in a team for successful team work 
- Collaborating  with intra and inter disciplinary experts.

Unit-3
Teaching Hours:6
Adaptability and Team Work
 

- Adapt to new tools, methodologies
- Cope with new situations and challenges quickly
- Active in a team for successful team work 
- Collaborating  with intra and inter disciplinary experts.

Unit-3
Teaching Hours:6
Adaptability and Team Work
 

- Adapt to new tools, methodologies
- Cope with new situations and challenges quickly
- Active in a team for successful team work 
- Collaborating  with intra and inter disciplinary experts.

Unit-3
Teaching Hours:6
Adaptability and Team Work
 

- Adapt to new tools, methodologies
- Cope with new situations and challenges quickly
- Active in a team for successful team work 
- Collaborating  with intra and inter disciplinary experts.

Unit-3
Teaching Hours:6
Adaptability and Team Work
 

- Adapt to new tools, methodologies
- Cope with new situations and challenges quickly
- Active in a team for successful team work 
- Collaborating  with intra and inter disciplinary experts.

Unit-3
Teaching Hours:6
Adaptability and Team Work
 

- Adapt to new tools, methodologies
- Cope with new situations and challenges quickly
- Active in a team for successful team work 
- Collaborating  with intra and inter disciplinary experts.

Unit-3
Teaching Hours:6
Adaptability and Team Work
 

- Adapt to new tools, methodologies
- Cope with new situations and challenges quickly
- Active in a team for successful team work 
- Collaborating  with intra and inter disciplinary experts.

Unit-4
Teaching Hours:6
Time Management and Leadership skills
 

- The ability to prioritize tasks, 
- Manage deadlines
- Delivering high-quality work.
- Stay organized to meet project milestones 
- Guiding teams, making strategic decisions, 
- Inspiring others, mentorship for nurturing talent within the organization.

Unit-4
Teaching Hours:6
Time Management and Leadership skills
 

- The ability to prioritize tasks, 
- Manage deadlines
- Delivering high-quality work.
- Stay organized to meet project milestones 
- Guiding teams, making strategic decisions, 
- Inspiring others, mentorship for nurturing talent within the organization.

Unit-4
Teaching Hours:6
Time Management and Leadership skills
 

- The ability to prioritize tasks, 
- Manage deadlines
- Delivering high-quality work.
- Stay organized to meet project milestones 
- Guiding teams, making strategic decisions, 
- Inspiring others, mentorship for nurturing talent within the organization.

Unit-4
Teaching Hours:6
Time Management and Leadership skills
 

- The ability to prioritize tasks, 
- Manage deadlines
- Delivering high-quality work.
- Stay organized to meet project milestones 
- Guiding teams, making strategic decisions, 
- Inspiring others, mentorship for nurturing talent within the organization.

Unit-4
Teaching Hours:6
Time Management and Leadership skills
 

- The ability to prioritize tasks, 
- Manage deadlines
- Delivering high-quality work.
- Stay organized to meet project milestones 
- Guiding teams, making strategic decisions, 
- Inspiring others, mentorship for nurturing talent within the organization.

Unit-4
Teaching Hours:6
Time Management and Leadership skills
 

- The ability to prioritize tasks, 
- Manage deadlines
- Delivering high-quality work.
- Stay organized to meet project milestones 
- Guiding teams, making strategic decisions, 
- Inspiring others, mentorship for nurturing talent within the organization.

Unit-4
Teaching Hours:6
Time Management and Leadership skills
 

- The ability to prioritize tasks, 
- Manage deadlines
- Delivering high-quality work.
- Stay organized to meet project milestones 
- Guiding teams, making strategic decisions, 
- Inspiring others, mentorship for nurturing talent within the organization.

Unit-4
Teaching Hours:6
Time Management and Leadership skills
 

- The ability to prioritize tasks, 
- Manage deadlines
- Delivering high-quality work.
- Stay organized to meet project milestones 
- Guiding teams, making strategic decisions, 
- Inspiring others, mentorship for nurturing talent within the organization.

Unit-4
Teaching Hours:6
Time Management and Leadership skills
 

- The ability to prioritize tasks, 
- Manage deadlines
- Delivering high-quality work.
- Stay organized to meet project milestones 
- Guiding teams, making strategic decisions, 
- Inspiring others, mentorship for nurturing talent within the organization.

Unit-4
Teaching Hours:6
Time Management and Leadership skills
 

- The ability to prioritize tasks, 
- Manage deadlines
- Delivering high-quality work.
- Stay organized to meet project milestones 
- Guiding teams, making strategic decisions, 
- Inspiring others, mentorship for nurturing talent within the organization.

Unit-4
Teaching Hours:6
Time Management and Leadership skills
 

- The ability to prioritize tasks, 
- Manage deadlines
- Delivering high-quality work.
- Stay organized to meet project milestones 
- Guiding teams, making strategic decisions, 
- Inspiring others, mentorship for nurturing talent within the organization.

Unit-4
Teaching Hours:6
Time Management and Leadership skills
 

- The ability to prioritize tasks, 
- Manage deadlines
- Delivering high-quality work.
- Stay organized to meet project milestones 
- Guiding teams, making strategic decisions, 
- Inspiring others, mentorship for nurturing talent within the organization.

Unit-4
Teaching Hours:6
Time Management and Leadership skills
 

- The ability to prioritize tasks, 
- Manage deadlines
- Delivering high-quality work.
- Stay organized to meet project milestones 
- Guiding teams, making strategic decisions, 
- Inspiring others, mentorship for nurturing talent within the organization.

Unit-4
Teaching Hours:6
Time Management and Leadership skills
 

- The ability to prioritize tasks, 
- Manage deadlines
- Delivering high-quality work.
- Stay organized to meet project milestones 
- Guiding teams, making strategic decisions, 
- Inspiring others, mentorship for nurturing talent within the organization.

Unit-5
Teaching Hours:6
Empathy, Resilience and Stress Management
 

- Understanding the needs and perspectives of users, colleagues, and clients
- Ability to cope with setbacks, manage stress, and maintain a positive attitude.
- Creative thinking to generate novel solutions, designing user-friendly interfaces, and improving existing processes

Unit-5
Teaching Hours:6
Empathy, Resilience and Stress Management
 

- Understanding the needs and perspectives of users, colleagues, and clients
- Ability to cope with setbacks, manage stress, and maintain a positive attitude.
- Creative thinking to generate novel solutions, designing user-friendly interfaces, and improving existing processes

Unit-5
Teaching Hours:6
Empathy, Resilience and Stress Management
 

- Understanding the needs and perspectives of users, colleagues, and clients
- Ability to cope with setbacks, manage stress, and maintain a positive attitude.
- Creative thinking to generate novel solutions, designing user-friendly interfaces, and improving existing processes

Unit-5
Teaching Hours:6
Empathy, Resilience and Stress Management
 

- Understanding the needs and perspectives of users, colleagues, and clients
- Ability to cope with setbacks, manage stress, and maintain a positive attitude.
- Creative thinking to generate novel solutions, designing user-friendly interfaces, and improving existing processes

Unit-5
Teaching Hours:6
Empathy, Resilience and Stress Management
 

- Understanding the needs and perspectives of users, colleagues, and clients
- Ability to cope with setbacks, manage stress, and maintain a positive attitude.
- Creative thinking to generate novel solutions, designing user-friendly interfaces, and improving existing processes

Unit-5
Teaching Hours:6
Empathy, Resilience and Stress Management
 

- Understanding the needs and perspectives of users, colleagues, and clients
- Ability to cope with setbacks, manage stress, and maintain a positive attitude.
- Creative thinking to generate novel solutions, designing user-friendly interfaces, and improving existing processes

Unit-5
Teaching Hours:6
Empathy, Resilience and Stress Management
 

- Understanding the needs and perspectives of users, colleagues, and clients
- Ability to cope with setbacks, manage stress, and maintain a positive attitude.
- Creative thinking to generate novel solutions, designing user-friendly interfaces, and improving existing processes

Unit-5
Teaching Hours:6
Empathy, Resilience and Stress Management
 

- Understanding the needs and perspectives of users, colleagues, and clients
- Ability to cope with setbacks, manage stress, and maintain a positive attitude.
- Creative thinking to generate novel solutions, designing user-friendly interfaces, and improving existing processes

Unit-5
Teaching Hours:6
Empathy, Resilience and Stress Management
 

- Understanding the needs and perspectives of users, colleagues, and clients
- Ability to cope with setbacks, manage stress, and maintain a positive attitude.
- Creative thinking to generate novel solutions, designing user-friendly interfaces, and improving existing processes

Unit-5
Teaching Hours:6
Empathy, Resilience and Stress Management
 

- Understanding the needs and perspectives of users, colleagues, and clients
- Ability to cope with setbacks, manage stress, and maintain a positive attitude.
- Creative thinking to generate novel solutions, designing user-friendly interfaces, and improving existing processes

Unit-5
Teaching Hours:6
Empathy, Resilience and Stress Management
 

- Understanding the needs and perspectives of users, colleagues, and clients
- Ability to cope with setbacks, manage stress, and maintain a positive attitude.
- Creative thinking to generate novel solutions, designing user-friendly interfaces, and improving existing processes

Unit-5
Teaching Hours:6
Empathy, Resilience and Stress Management
 

- Understanding the needs and perspectives of users, colleagues, and clients
- Ability to cope with setbacks, manage stress, and maintain a positive attitude.
- Creative thinking to generate novel solutions, designing user-friendly interfaces, and improving existing processes

Unit-5
Teaching Hours:6
Empathy, Resilience and Stress Management
 

- Understanding the needs and perspectives of users, colleagues, and clients
- Ability to cope with setbacks, manage stress, and maintain a positive attitude.
- Creative thinking to generate novel solutions, designing user-friendly interfaces, and improving existing processes

Unit-5
Teaching Hours:6
Empathy, Resilience and Stress Management
 

- Understanding the needs and perspectives of users, colleagues, and clients
- Ability to cope with setbacks, manage stress, and maintain a positive attitude.
- Creative thinking to generate novel solutions, designing user-friendly interfaces, and improving existing processes

Text Books And Reference Books:
  1. Soft Skills and Employability Skills. Cambridge University Press, 2018.
  2. The Importance of Soft Skills in Engineering Education.Switzerland: Springer, 2022.
Essential Reading / Recommended Reading
  1. Professional English and Soft Skills. Anmol Publication Pvt Ltd, 2013.
  2. Personality Development and Soft Skills: Preparing for Tomorrow. I.K.International publishing house pvt ltd., 2018
Evaluation Pattern

 

 

CIAs + A

ESE

Total

 

CIA1

Quiz/Test/Assignment/Oral Talk

Conducted

50

50 

100

 

CIA2

Mid Semester Examination (MSE)

Condensed

25

25

50

 

CIA3

Paper/Article/Mini/Project/Presentation

BTGE634 - GERMAN LANGUAGE (2022 Batch)

Total Teaching Hours for Semester:30
No of Lecture Hours/Week:2
Max Marks:50
Credits:2

Course Objectives/Course Description

 

Course Description

This beginner German course introduces pronunciation, grammar basics, and present tense sentence formation. Students build vocabulary for daily interactions and explore German culture and other German-speaking countries.

Course Objectives:

1.To make the students to learn the basics of German Language

2.Enable them with basic reading and writing skills.

 3. To make simple conversations in German Language

Learning Outcome

CO1: To make the students to learn the basics of German Language

CO2: Enable them with basic reading and writing skills

CO3: To make simple conversations in German Language

Unit-1
Teaching Hours:6
Alphabets
 

Alphabets  and Phonetics,Numbers,Making Present tense sentences

Unit-1
Teaching Hours:6
Alphabets
 

Alphabets  and Phonetics,Numbers,Making Present tense sentences

Unit-1
Teaching Hours:6
Alphabets
 

Alphabets  and Phonetics,Numbers,Making Present tense sentences

Unit-1
Teaching Hours:6
Alphabets
 

Alphabets  and Phonetics,Numbers,Making Present tense sentences

Unit-1
Teaching Hours:6
Alphabets
 

Alphabets  and Phonetics,Numbers,Making Present tense sentences

Unit-1
Teaching Hours:6
Alphabets
 

Alphabets  and Phonetics,Numbers,Making Present tense sentences

Unit-1
Teaching Hours:6
Alphabets
 

Alphabets  and Phonetics,Numbers,Making Present tense sentences

Unit-1
Teaching Hours:6
Alphabets
 

Alphabets  and Phonetics,Numbers,Making Present tense sentences

Unit-1
Teaching Hours:6
Alphabets
 

Alphabets  and Phonetics,Numbers,Making Present tense sentences

Unit-1
Teaching Hours:6
Alphabets
 

Alphabets  and Phonetics,Numbers,Making Present tense sentences

Unit-1
Teaching Hours:6
Alphabets
 

Alphabets  and Phonetics,Numbers,Making Present tense sentences

Unit-1
Teaching Hours:6
Alphabets
 

Alphabets  and Phonetics,Numbers,Making Present tense sentences

Unit-1
Teaching Hours:6
Alphabets
 

Alphabets  and Phonetics,Numbers,Making Present tense sentences

Unit-1
Teaching Hours:6
Alphabets
 

Alphabets  and Phonetics,Numbers,Making Present tense sentences

Unit-2
Teaching Hours:6
Making W questions and yes or no questions
 

Making W questions and yes or no questions

Unit-2
Teaching Hours:6
Making W questions and yes or no questions
 

Making W questions and yes or no questions

Unit-2
Teaching Hours:6
Making W questions and yes or no questions
 

Making W questions and yes or no questions

Unit-2
Teaching Hours:6
Making W questions and yes or no questions
 

Making W questions and yes or no questions

Unit-2
Teaching Hours:6
Making W questions and yes or no questions
 

Making W questions and yes or no questions

Unit-2
Teaching Hours:6
Making W questions and yes or no questions
 

Making W questions and yes or no questions

Unit-2
Teaching Hours:6
Making W questions and yes or no questions
 

Making W questions and yes or no questions

Unit-2
Teaching Hours:6
Making W questions and yes or no questions
 

Making W questions and yes or no questions

Unit-2
Teaching Hours:6
Making W questions and yes or no questions
 

Making W questions and yes or no questions

Unit-2
Teaching Hours:6
Making W questions and yes or no questions
 

Making W questions and yes or no questions

Unit-2
Teaching Hours:6
Making W questions and yes or no questions
 

Making W questions and yes or no questions

Unit-2
Teaching Hours:6
Making W questions and yes or no questions
 

Making W questions and yes or no questions

Unit-2
Teaching Hours:6
Making W questions and yes or no questions
 

Making W questions and yes or no questions

Unit-2
Teaching Hours:6
Making W questions and yes or no questions
 

Making W questions and yes or no questions

Unit-3
Teaching Hours:6
Vocabulary
 

Vocabulary ,About Germany and their culture ,About other German speaking countries ,Basic Grammar 

Unit-3
Teaching Hours:6
Vocabulary
 

Vocabulary ,About Germany and their culture ,About other German speaking countries ,Basic Grammar 

Unit-3
Teaching Hours:6
Vocabulary
 

Vocabulary ,About Germany and their culture ,About other German speaking countries ,Basic Grammar 

Unit-3
Teaching Hours:6
Vocabulary
 

Vocabulary ,About Germany and their culture ,About other German speaking countries ,Basic Grammar 

Unit-3
Teaching Hours:6
Vocabulary
 

Vocabulary ,About Germany and their culture ,About other German speaking countries ,Basic Grammar 

Unit-3
Teaching Hours:6
Vocabulary
 

Vocabulary ,About Germany and their culture ,About other German speaking countries ,Basic Grammar 

Unit-3
Teaching Hours:6
Vocabulary
 

Vocabulary ,About Germany and their culture ,About other German speaking countries ,Basic Grammar 

Unit-3
Teaching Hours:6
Vocabulary
 

Vocabulary ,About Germany and their culture ,About other German speaking countries ,Basic Grammar 

Unit-3
Teaching Hours:6
Vocabulary
 

Vocabulary ,About Germany and their culture ,About other German speaking countries ,Basic Grammar 

Unit-3
Teaching Hours:6
Vocabulary
 

Vocabulary ,About Germany and their culture ,About other German speaking countries ,Basic Grammar 

Unit-3
Teaching Hours:6
Vocabulary
 

Vocabulary ,About Germany and their culture ,About other German speaking countries ,Basic Grammar 

Unit-3
Teaching Hours:6
Vocabulary
 

Vocabulary ,About Germany and their culture ,About other German speaking countries ,Basic Grammar 

Unit-3
Teaching Hours:6
Vocabulary
 

Vocabulary ,About Germany and their culture ,About other German speaking countries ,Basic Grammar 

Unit-3
Teaching Hours:6
Vocabulary
 

Vocabulary ,About Germany and their culture ,About other German speaking countries ,Basic Grammar 

Unit-4
Teaching Hours:6
Prepositions,Making simple conversations
 

Prepositions,Making simple conversations

Unit-4
Teaching Hours:6
Prepositions,Making simple conversations
 

Prepositions,Making simple conversations

Unit-4
Teaching Hours:6
Prepositions,Making simple conversations
 

Prepositions,Making simple conversations

Unit-4
Teaching Hours:6
Prepositions,Making simple conversations
 

Prepositions,Making simple conversations

Unit-4
Teaching Hours:6
Prepositions,Making simple conversations
 

Prepositions,Making simple conversations

Unit-4
Teaching Hours:6
Prepositions,Making simple conversations
 

Prepositions,Making simple conversations

Unit-4
Teaching Hours:6
Prepositions,Making simple conversations
 

Prepositions,Making simple conversations

Unit-4
Teaching Hours:6
Prepositions,Making simple conversations
 

Prepositions,Making simple conversations

Unit-4
Teaching Hours:6
Prepositions,Making simple conversations
 

Prepositions,Making simple conversations

Unit-4
Teaching Hours:6
Prepositions,Making simple conversations
 

Prepositions,Making simple conversations

Unit-4
Teaching Hours:6
Prepositions,Making simple conversations
 

Prepositions,Making simple conversations

Unit-4
Teaching Hours:6
Prepositions,Making simple conversations
 

Prepositions,Making simple conversations

Unit-4
Teaching Hours:6
Prepositions,Making simple conversations
 

Prepositions,Making simple conversations

Unit-4
Teaching Hours:6
Prepositions,Making simple conversations
 

Prepositions,Making simple conversations

Unit-5
Teaching Hours:6
Writing a small paragraph
 

Writing a small paragraph

 

Learning how to tell time

Unit-5
Teaching Hours:6
Writing a small paragraph
 

Writing a small paragraph

 

Learning how to tell time

Unit-5
Teaching Hours:6
Writing a small paragraph
 

Writing a small paragraph

 

Learning how to tell time

Unit-5
Teaching Hours:6
Writing a small paragraph
 

Writing a small paragraph

 

Learning how to tell time

Unit-5
Teaching Hours:6
Writing a small paragraph
 

Writing a small paragraph

 

Learning how to tell time

Unit-5
Teaching Hours:6
Writing a small paragraph
 

Writing a small paragraph

 

Learning how to tell time

Unit-5
Teaching Hours:6
Writing a small paragraph
 

Writing a small paragraph

 

Learning how to tell time

Unit-5
Teaching Hours:6
Writing a small paragraph
 

Writing a small paragraph

 

Learning how to tell time

Unit-5
Teaching Hours:6
Writing a small paragraph
 

Writing a small paragraph

 

Learning how to tell time

Unit-5
Teaching Hours:6
Writing a small paragraph
 

Writing a small paragraph

 

Learning how to tell time

Unit-5
Teaching Hours:6
Writing a small paragraph
 

Writing a small paragraph

 

Learning how to tell time

Unit-5
Teaching Hours:6
Writing a small paragraph
 

Writing a small paragraph

 

Learning how to tell time

Unit-5
Teaching Hours:6
Writing a small paragraph
 

Writing a small paragraph

 

Learning how to tell time

Unit-5
Teaching Hours:6
Writing a small paragraph
 

Writing a small paragraph

 

Learning how to tell time

Text Books And Reference Books:

Netzwerk A1 Kursbuch

Essential Reading / Recommended Reading

Netzwerk A1 Arbeitsbuch

 
Evaluation Pattern

 CIA-1 (out of 10), 

CIA-2 (out of 25) 

CIA-3 (out of 10)

Attendance 5 Marks

ESE    (out of 50)

BTGE635 - INTELLECTUAL PROPERTY RIGHTS (2022 Batch)

Total Teaching Hours for Semester:30
No of Lecture Hours/Week:2
Max Marks:100
Credits:2

Course Objectives/Course Description

 

Innovation is crucial to us and plays significant role in the growth of economy. Government policies and legal framework offer protection to new inventions and creative works. This course intends to equip students to understand the policies and procedures they may have to rely on for the purposed of protecting their inventions or creative works during the course of their study or employment.

The course consists of five units. Theories behind the protection of intellectual property and its role in promoting innovations for the progress of the society are the focus of first unit. Second unit deals with protection of inventions through patent regime in India touching upon the process of obtaining international patents. The central feature of getting patent is to establish new invention through evidence. This is done through maintaining experimental/lab records and other necessary documents. The process of creating and maintain documentary evidence is dealt in Unit 3. Computers have become an integral part of human life. Till 1980, computer related inventions were not given much importance and lying low but today they have assumed huge significance in our economy. Computer related inventions and their protection which requires special treatment under legal regimes are discussed in Unit 4. The last module deals with innovations in e- commerce environment.

 

Learning Outcome

CO1: Understand the meaning and importance of intellectual property rights as well as different categories of intellectual property.

CO2: Understand the meaning of patentable invention, the procedure for filing patent applications, rights of the patentee and the different rights of patentee.

CO3: Maintain research records in the patent process, the process of patent document searching and how to interact with patent agent or attorney.

CO4: Understand the issues related to patenting of software, digital rights management and database management system.

CO5: Understand the intellectual property issues in e- commerce, evidentiary value of electronic signature certificates, protection of websites and the protection of semiconductor integrated circuits.

Unit-1
Teaching Hours:6
Introduction
 

Detailed Syllabus: Philosophy of intellectual property - Intellectual Property & Intellectual Assists – Significance of IP for Engineers and Scientists – Types of IP – Legal framework for Protection of IP – Strategies for IP protection and role of Engineers and Scientists.

Unit-1
Teaching Hours:6
Introduction
 

Detailed Syllabus: Philosophy of intellectual property - Intellectual Property & Intellectual Assists – Significance of IP for Engineers and Scientists – Types of IP – Legal framework for Protection of IP – Strategies for IP protection and role of Engineers and Scientists.

Unit-1
Teaching Hours:6
Introduction
 

Detailed Syllabus: Philosophy of intellectual property - Intellectual Property & Intellectual Assists – Significance of IP for Engineers and Scientists – Types of IP – Legal framework for Protection of IP – Strategies for IP protection and role of Engineers and Scientists.

Unit-1
Teaching Hours:6
Introduction
 

Detailed Syllabus: Philosophy of intellectual property - Intellectual Property & Intellectual Assists – Significance of IP for Engineers and Scientists – Types of IP – Legal framework for Protection of IP – Strategies for IP protection and role of Engineers and Scientists.

Unit-1
Teaching Hours:6
Introduction
 

Detailed Syllabus: Philosophy of intellectual property - Intellectual Property & Intellectual Assists – Significance of IP for Engineers and Scientists – Types of IP – Legal framework for Protection of IP – Strategies for IP protection and role of Engineers and Scientists.

Unit-1
Teaching Hours:6
Introduction
 

Detailed Syllabus: Philosophy of intellectual property - Intellectual Property & Intellectual Assists – Significance of IP for Engineers and Scientists – Types of IP – Legal framework for Protection of IP – Strategies for IP protection and role of Engineers and Scientists.

Unit-1
Teaching Hours:6
Introduction
 

Detailed Syllabus: Philosophy of intellectual property - Intellectual Property & Intellectual Assists – Significance of IP for Engineers and Scientists – Types of IP – Legal framework for Protection of IP – Strategies for IP protection and role of Engineers and Scientists.

Unit-1
Teaching Hours:6
Introduction
 

Detailed Syllabus: Philosophy of intellectual property - Intellectual Property & Intellectual Assists – Significance of IP for Engineers and Scientists – Types of IP – Legal framework for Protection of IP – Strategies for IP protection and role of Engineers and Scientists.

Unit-1
Teaching Hours:6
Introduction
 

Detailed Syllabus: Philosophy of intellectual property - Intellectual Property & Intellectual Assists – Significance of IP for Engineers and Scientists – Types of IP – Legal framework for Protection of IP – Strategies for IP protection and role of Engineers and Scientists.

Unit-1
Teaching Hours:6
Introduction
 

Detailed Syllabus: Philosophy of intellectual property - Intellectual Property & Intellectual Assists – Significance of IP for Engineers and Scientists – Types of IP – Legal framework for Protection of IP – Strategies for IP protection and role of Engineers and Scientists.

Unit-1
Teaching Hours:6
Introduction
 

Detailed Syllabus: Philosophy of intellectual property - Intellectual Property & Intellectual Assists – Significance of IP for Engineers and Scientists – Types of IP – Legal framework for Protection of IP – Strategies for IP protection and role of Engineers and Scientists.

Unit-1
Teaching Hours:6
Introduction
 

Detailed Syllabus: Philosophy of intellectual property - Intellectual Property & Intellectual Assists – Significance of IP for Engineers and Scientists – Types of IP – Legal framework for Protection of IP – Strategies for IP protection and role of Engineers and Scientists.

Unit-1
Teaching Hours:6
Introduction
 

Detailed Syllabus: Philosophy of intellectual property - Intellectual Property & Intellectual Assists – Significance of IP for Engineers and Scientists – Types of IP – Legal framework for Protection of IP – Strategies for IP protection and role of Engineers and Scientists.

Unit-1
Teaching Hours:6
Introduction
 

Detailed Syllabus: Philosophy of intellectual property - Intellectual Property & Intellectual Assists – Significance of IP for Engineers and Scientists – Types of IP – Legal framework for Protection of IP – Strategies for IP protection and role of Engineers and Scientists.

Unit-2
Teaching Hours:6
Patenting Inventions
 

Meaning of Invention – Product and Process Patents – True inventor – Applications for Patent – Procedures for obtaining Patent – Award of Patent – rights of patentee – grounds for invalidation – Legal remedies – International patents

Unit-2
Teaching Hours:6
Patenting Inventions
 

Meaning of Invention – Product and Process Patents – True inventor – Applications for Patent – Procedures for obtaining Patent – Award of Patent – rights of patentee – grounds for invalidation – Legal remedies – International patents

Unit-2
Teaching Hours:6
Patenting Inventions
 

Meaning of Invention – Product and Process Patents – True inventor – Applications for Patent – Procedures for obtaining Patent – Award of Patent – rights of patentee – grounds for invalidation – Legal remedies – International patents

Unit-2
Teaching Hours:6
Patenting Inventions
 

Meaning of Invention – Product and Process Patents – True inventor – Applications for Patent – Procedures for obtaining Patent – Award of Patent – rights of patentee – grounds for invalidation – Legal remedies – International patents

Unit-2
Teaching Hours:6
Patenting Inventions
 

Meaning of Invention – Product and Process Patents – True inventor – Applications for Patent – Procedures for obtaining Patent – Award of Patent – rights of patentee – grounds for invalidation – Legal remedies – International patents

Unit-2
Teaching Hours:6
Patenting Inventions
 

Meaning of Invention – Product and Process Patents – True inventor – Applications for Patent – Procedures for obtaining Patent – Award of Patent – rights of patentee – grounds for invalidation – Legal remedies – International patents

Unit-2
Teaching Hours:6
Patenting Inventions
 

Meaning of Invention – Product and Process Patents – True inventor – Applications for Patent – Procedures for obtaining Patent – Award of Patent – rights of patentee – grounds for invalidation – Legal remedies – International patents

Unit-2
Teaching Hours:6
Patenting Inventions
 

Meaning of Invention – Product and Process Patents – True inventor – Applications for Patent – Procedures for obtaining Patent – Award of Patent – rights of patentee – grounds for invalidation – Legal remedies – International patents

Unit-2
Teaching Hours:6
Patenting Inventions
 

Meaning of Invention – Product and Process Patents – True inventor – Applications for Patent – Procedures for obtaining Patent – Award of Patent – rights of patentee – grounds for invalidation – Legal remedies – International patents

Unit-2
Teaching Hours:6
Patenting Inventions
 

Meaning of Invention – Product and Process Patents – True inventor – Applications for Patent – Procedures for obtaining Patent – Award of Patent – rights of patentee – grounds for invalidation – Legal remedies – International patents

Unit-2
Teaching Hours:6
Patenting Inventions
 

Meaning of Invention – Product and Process Patents – True inventor – Applications for Patent – Procedures for obtaining Patent – Award of Patent – rights of patentee – grounds for invalidation – Legal remedies – International patents

Unit-2
Teaching Hours:6
Patenting Inventions
 

Meaning of Invention – Product and Process Patents – True inventor – Applications for Patent – Procedures for obtaining Patent – Award of Patent – rights of patentee – grounds for invalidation – Legal remedies – International patents

Unit-2
Teaching Hours:6
Patenting Inventions
 

Meaning of Invention – Product and Process Patents – True inventor – Applications for Patent – Procedures for obtaining Patent – Award of Patent – rights of patentee – grounds for invalidation – Legal remedies – International patents

Unit-2
Teaching Hours:6
Patenting Inventions
 

Meaning of Invention – Product and Process Patents – True inventor – Applications for Patent – Procedures for obtaining Patent – Award of Patent – rights of patentee – grounds for invalidation – Legal remedies – International patents

Unit-3
Teaching Hours:6
Inventive Activities
 

Research Records in the patent process – Inventorship - Internet patent document searching and interactions with an information specialist - Interactions with a patent agent or attorney - Ancillary patent activities - Technology transfer, patent licensing and related strategies.

Unit-3
Teaching Hours:6
Inventive Activities
 

Research Records in the patent process – Inventorship - Internet patent document searching and interactions with an information specialist - Interactions with a patent agent or attorney - Ancillary patent activities - Technology transfer, patent licensing and related strategies.

Unit-3
Teaching Hours:6
Inventive Activities
 

Research Records in the patent process – Inventorship - Internet patent document searching and interactions with an information specialist - Interactions with a patent agent or attorney - Ancillary patent activities - Technology transfer, patent licensing and related strategies.

Unit-3
Teaching Hours:6
Inventive Activities
 

Research Records in the patent process – Inventorship - Internet patent document searching and interactions with an information specialist - Interactions with a patent agent or attorney - Ancillary patent activities - Technology transfer, patent licensing and related strategies.

Unit-3
Teaching Hours:6
Inventive Activities
 

Research Records in the patent process – Inventorship - Internet patent document searching and interactions with an information specialist - Interactions with a patent agent or attorney - Ancillary patent activities - Technology transfer, patent licensing and related strategies.

Unit-3
Teaching Hours:6
Inventive Activities
 

Research Records in the patent process – Inventorship - Internet patent document searching and interactions with an information specialist - Interactions with a patent agent or attorney - Ancillary patent activities - Technology transfer, patent licensing and related strategies.

Unit-3
Teaching Hours:6
Inventive Activities
 

Research Records in the patent process – Inventorship - Internet patent document searching and interactions with an information specialist - Interactions with a patent agent or attorney - Ancillary patent activities - Technology transfer, patent licensing and related strategies.

Unit-3
Teaching Hours:6
Inventive Activities
 

Research Records in the patent process – Inventorship - Internet patent document searching and interactions with an information specialist - Interactions with a patent agent or attorney - Ancillary patent activities - Technology transfer, patent licensing and related strategies.

Unit-3
Teaching Hours:6
Inventive Activities
 

Research Records in the patent process – Inventorship - Internet patent document searching and interactions with an information specialist - Interactions with a patent agent or attorney - Ancillary patent activities - Technology transfer, patent licensing and related strategies.

Unit-3
Teaching Hours:6
Inventive Activities
 

Research Records in the patent process – Inventorship - Internet patent document searching and interactions with an information specialist - Interactions with a patent agent or attorney - Ancillary patent activities - Technology transfer, patent licensing and related strategies.

Unit-3
Teaching Hours:6
Inventive Activities
 

Research Records in the patent process – Inventorship - Internet patent document searching and interactions with an information specialist - Interactions with a patent agent or attorney - Ancillary patent activities - Technology transfer, patent licensing and related strategies.

Unit-3
Teaching Hours:6
Inventive Activities
 

Research Records in the patent process – Inventorship - Internet patent document searching and interactions with an information specialist - Interactions with a patent agent or attorney - Ancillary patent activities - Technology transfer, patent licensing and related strategies.

Unit-3
Teaching Hours:6
Inventive Activities
 

Research Records in the patent process – Inventorship - Internet patent document searching and interactions with an information specialist - Interactions with a patent agent or attorney - Ancillary patent activities - Technology transfer, patent licensing and related strategies.

Unit-3
Teaching Hours:6
Inventive Activities
 

Research Records in the patent process – Inventorship - Internet patent document searching and interactions with an information specialist - Interactions with a patent agent or attorney - Ancillary patent activities - Technology transfer, patent licensing and related strategies.

Unit-4
Teaching Hours:6
Computer Implemented Inventions
 

Patents and software – Business Method Patents – Data protection – Administrative methods – Digital Rights Management (DRM) – Database and Database Management systems - Billing and payment – Graphical User Interface (GUI) – Simulations – E-learning – Medical informatics – Mathematical models

Unit-4
Teaching Hours:6
Computer Implemented Inventions
 

Patents and software – Business Method Patents – Data protection – Administrative methods – Digital Rights Management (DRM) – Database and Database Management systems - Billing and payment – Graphical User Interface (GUI) – Simulations – E-learning – Medical informatics – Mathematical models

Unit-4
Teaching Hours:6
Computer Implemented Inventions
 

Patents and software – Business Method Patents – Data protection – Administrative methods – Digital Rights Management (DRM) – Database and Database Management systems - Billing and payment – Graphical User Interface (GUI) – Simulations – E-learning – Medical informatics – Mathematical models

Unit-4
Teaching Hours:6
Computer Implemented Inventions
 

Patents and software – Business Method Patents – Data protection – Administrative methods – Digital Rights Management (DRM) – Database and Database Management systems - Billing and payment – Graphical User Interface (GUI) – Simulations – E-learning – Medical informatics – Mathematical models

Unit-4
Teaching Hours:6
Computer Implemented Inventions
 

Patents and software – Business Method Patents – Data protection – Administrative methods – Digital Rights Management (DRM) – Database and Database Management systems - Billing and payment – Graphical User Interface (GUI) – Simulations – E-learning – Medical informatics – Mathematical models

Unit-4
Teaching Hours:6
Computer Implemented Inventions
 

Patents and software – Business Method Patents – Data protection – Administrative methods – Digital Rights Management (DRM) – Database and Database Management systems - Billing and payment – Graphical User Interface (GUI) – Simulations – E-learning – Medical informatics – Mathematical models

Unit-4
Teaching Hours:6
Computer Implemented Inventions
 

Patents and software – Business Method Patents – Data protection – Administrative methods – Digital Rights Management (DRM) – Database and Database Management systems - Billing and payment – Graphical User Interface (GUI) – Simulations – E-learning – Medical informatics – Mathematical models

Unit-4
Teaching Hours:6
Computer Implemented Inventions
 

Patents and software – Business Method Patents – Data protection – Administrative methods – Digital Rights Management (DRM) – Database and Database Management systems - Billing and payment – Graphical User Interface (GUI) – Simulations – E-learning – Medical informatics – Mathematical models

Unit-4
Teaching Hours:6
Computer Implemented Inventions
 

Patents and software – Business Method Patents – Data protection – Administrative methods – Digital Rights Management (DRM) – Database and Database Management systems - Billing and payment – Graphical User Interface (GUI) – Simulations – E-learning – Medical informatics – Mathematical models

Unit-4
Teaching Hours:6
Computer Implemented Inventions
 

Patents and software – Business Method Patents – Data protection – Administrative methods – Digital Rights Management (DRM) – Database and Database Management systems - Billing and payment – Graphical User Interface (GUI) – Simulations – E-learning – Medical informatics – Mathematical models

Unit-4
Teaching Hours:6
Computer Implemented Inventions
 

Patents and software – Business Method Patents – Data protection – Administrative methods – Digital Rights Management (DRM) – Database and Database Management systems - Billing and payment – Graphical User Interface (GUI) – Simulations – E-learning – Medical informatics – Mathematical models

Unit-4
Teaching Hours:6
Computer Implemented Inventions
 

Patents and software – Business Method Patents – Data protection – Administrative methods – Digital Rights Management (DRM) – Database and Database Management systems - Billing and payment – Graphical User Interface (GUI) – Simulations – E-learning – Medical informatics – Mathematical models

Unit-4
Teaching Hours:6
Computer Implemented Inventions
 

Patents and software – Business Method Patents – Data protection – Administrative methods – Digital Rights Management (DRM) – Database and Database Management systems - Billing and payment – Graphical User Interface (GUI) – Simulations – E-learning – Medical informatics – Mathematical models

Unit-4
Teaching Hours:6
Computer Implemented Inventions
 

Patents and software – Business Method Patents – Data protection – Administrative methods – Digital Rights Management (DRM) – Database and Database Management systems - Billing and payment – Graphical User Interface (GUI) – Simulations – E-learning – Medical informatics – Mathematical models

Unit-5
Teaching Hours:6
Innovations in E-Commerce
 

IP issues in e-commerce - Protection of websites – website hosting agreements – Copyright issues – Patentability of online business models – Jurisdiction – Digital signatures – Evidentiary value of Electronic signature certificates – Role of Certifying Authorities – Protection of  Semiconductor ICs

Unit-5
Teaching Hours:6
Innovations in E-Commerce
 

IP issues in e-commerce - Protection of websites – website hosting agreements – Copyright issues – Patentability of online business models – Jurisdiction – Digital signatures – Evidentiary value of Electronic signature certificates – Role of Certifying Authorities – Protection of  Semiconductor ICs

Unit-5
Teaching Hours:6
Innovations in E-Commerce
 

IP issues in e-commerce - Protection of websites – website hosting agreements – Copyright issues – Patentability of online business models – Jurisdiction – Digital signatures – Evidentiary value of Electronic signature certificates – Role of Certifying Authorities – Protection of  Semiconductor ICs

Unit-5
Teaching Hours:6
Innovations in E-Commerce
 

IP issues in e-commerce - Protection of websites – website hosting agreements – Copyright issues – Patentability of online business models – Jurisdiction – Digital signatures – Evidentiary value of Electronic signature certificates – Role of Certifying Authorities – Protection of  Semiconductor ICs

Unit-5
Teaching Hours:6
Innovations in E-Commerce
 

IP issues in e-commerce - Protection of websites – website hosting agreements – Copyright issues – Patentability of online business models – Jurisdiction – Digital signatures – Evidentiary value of Electronic signature certificates – Role of Certifying Authorities – Protection of  Semiconductor ICs

Unit-5
Teaching Hours:6
Innovations in E-Commerce
 

IP issues in e-commerce - Protection of websites – website hosting agreements – Copyright issues – Patentability of online business models – Jurisdiction – Digital signatures – Evidentiary value of Electronic signature certificates – Role of Certifying Authorities – Protection of  Semiconductor ICs

Unit-5
Teaching Hours:6
Innovations in E-Commerce
 

IP issues in e-commerce - Protection of websites – website hosting agreements – Copyright issues – Patentability of online business models – Jurisdiction – Digital signatures – Evidentiary value of Electronic signature certificates – Role of Certifying Authorities – Protection of  Semiconductor ICs

Unit-5
Teaching Hours:6
Innovations in E-Commerce
 

IP issues in e-commerce - Protection of websites – website hosting agreements – Copyright issues – Patentability of online business models – Jurisdiction – Digital signatures – Evidentiary value of Electronic signature certificates – Role of Certifying Authorities – Protection of  Semiconductor ICs

Unit-5
Teaching Hours:6
Innovations in E-Commerce
 

IP issues in e-commerce - Protection of websites – website hosting agreements – Copyright issues – Patentability of online business models – Jurisdiction – Digital signatures – Evidentiary value of Electronic signature certificates – Role of Certifying Authorities – Protection of  Semiconductor ICs

Unit-5
Teaching Hours:6
Innovations in E-Commerce
 

IP issues in e-commerce - Protection of websites – website hosting agreements – Copyright issues – Patentability of online business models – Jurisdiction – Digital signatures – Evidentiary value of Electronic signature certificates – Role of Certifying Authorities – Protection of  Semiconductor ICs

Unit-5
Teaching Hours:6
Innovations in E-Commerce
 

IP issues in e-commerce - Protection of websites – website hosting agreements – Copyright issues – Patentability of online business models – Jurisdiction – Digital signatures – Evidentiary value of Electronic signature certificates – Role of Certifying Authorities – Protection of  Semiconductor ICs

Unit-5
Teaching Hours:6
Innovations in E-Commerce
 

IP issues in e-commerce - Protection of websites – website hosting agreements – Copyright issues – Patentability of online business models – Jurisdiction – Digital signatures – Evidentiary value of Electronic signature certificates – Role of Certifying Authorities – Protection of  Semiconductor ICs

Unit-5
Teaching Hours:6
Innovations in E-Commerce
 

IP issues in e-commerce - Protection of websites – website hosting agreements – Copyright issues – Patentability of online business models – Jurisdiction – Digital signatures – Evidentiary value of Electronic signature certificates – Role of Certifying Authorities – Protection of  Semiconductor ICs

Unit-5
Teaching Hours:6
Innovations in E-Commerce
 

IP issues in e-commerce - Protection of websites – website hosting agreements – Copyright issues – Patentability of online business models – Jurisdiction – Digital signatures – Evidentiary value of Electronic signature certificates – Role of Certifying Authorities – Protection of  Semiconductor ICs

Text Books And Reference Books:

1. V.J. Taraporevala’s, Law of  Intellectual Property, Third Edition, 2019

2. Elizabeth Verkey, Intellectual Property, Eastern Book Company,  2015

Essential Reading / Recommended Reading

1. Martin Adelman, Cases and Materials on Patent Law, 2015

2. Avery N. Goldstein, Patent Law for Scientists and Engineers, Taylor & Francis (2005)

Evaluation Pattern

CIA 1

Assignment description: Class test to identify the different aspects of IP.

 

Assignment details: MCQs

 

CIA II (MSE)

Assessment Description: Closed book exam

Assignment Details: Mid semester examination five questions need to be answered.

 

CIA III

Assessment Description: Students would be assessed on the understanding of the different forms of IP, relevant theoretical justifications of intellectual property protection and the relevant IP statute from practitioner’s approach taught in the class and their ability to apply it correctly to the given problem and proposing solutions.

 

Assignment details: Students will be given a hypothetical legal problem in IP and will be required to write short essay, containing maximum 500 words. In the short essay, they have to answer the following questions

1. Identify the appropriate form of intellectual property.

2. Describe whether a pertinent theoretical justification meets or does not meet the respective form of IP.

3. Apply the correct principle of IP protection to the given case.

4. Evaluate the lacunae in the existing IP mechanism in comparison to international framework.

5. Devise a correct way of handling the lacunas.

ESE DETAILS -

Assessment Description : Closed book exam

Assignment Details: Five problem based questions need to be answered out of seven questions.

BTGE637 - PROFESSIONAL PSYCHOLOGY (2022 Batch)

Total Teaching Hours for Semester:30
No of Lecture Hours/Week:2
Max Marks:50
Credits:2

Course Objectives/Course Description

 

This course will enable the students to understand various developmental changes that takes place in human life and how people's thoughts, feelings, and behaviors are influenced by the social context consisting of the actual, imagined, or implied presence of others. The course introduces students to the existing theory and research in the past and contemporary social settings comprising viz, the intra-individual, inter-individual, and social factors that influence individual and group behavior.

Course Objectives:

  •   To provide students with frameworks from the psychology of human development
  •  To enhance their personal and professional development.
  • To examine their behavioral and relational styles, develop skills in managing work-life interface issues, and become more sensitive to cultural differences and diversity in groups

Learning Outcome

CO1: Understand the frameworks for the psychology of human development.

CO2: Show greater awareness of their thinking styles, relational styles, and behavioural styles of functioning.

CO3: Develop interpersonal awareness and skills, especially in the context of diversity and difference.

CO4: Develop preparatory skills toward effective work-life balance.

CO5: Develop an overall understanding of the psychosocial skills required in the professional world.

Unit-1
Teaching Hours:6
Introduction to Psychological Theories
 

Psychosocial development (Erickson)- Development of Cognition (Piaget) -  Moral Development (Kohlberg)-

Faith Development (Fowler)

Unit-1
Teaching Hours:6
Introduction to Psychological Theories
 

Psychosocial development (Erickson)- Development of Cognition (Piaget) -  Moral Development (Kohlberg)-

Faith Development (Fowler)

Unit-1
Teaching Hours:6
Introduction to Psychological Theories
 

Psychosocial development (Erickson)- Development of Cognition (Piaget) -  Moral Development (Kohlberg)-

Faith Development (Fowler)

Unit-1
Teaching Hours:6
Introduction to Psychological Theories
 

Psychosocial development (Erickson)- Development of Cognition (Piaget) -  Moral Development (Kohlberg)-

Faith Development (Fowler)

Unit-1
Teaching Hours:6
Introduction to Psychological Theories
 

Psychosocial development (Erickson)- Development of Cognition (Piaget) -  Moral Development (Kohlberg)-

Faith Development (Fowler)

Unit-1
Teaching Hours:6
Introduction to Psychological Theories
 

Psychosocial development (Erickson)- Development of Cognition (Piaget) -  Moral Development (Kohlberg)-

Faith Development (Fowler)

Unit-1
Teaching Hours:6
Introduction to Psychological Theories
 

Psychosocial development (Erickson)- Development of Cognition (Piaget) -  Moral Development (Kohlberg)-

Faith Development (Fowler)

Unit-1
Teaching Hours:6
Introduction to Psychological Theories
 

Psychosocial development (Erickson)- Development of Cognition (Piaget) -  Moral Development (Kohlberg)-

Faith Development (Fowler)

Unit-1
Teaching Hours:6
Introduction to Psychological Theories
 

Psychosocial development (Erickson)- Development of Cognition (Piaget) -  Moral Development (Kohlberg)-

Faith Development (Fowler)

Unit-1
Teaching Hours:6
Introduction to Psychological Theories
 

Psychosocial development (Erickson)- Development of Cognition (Piaget) -  Moral Development (Kohlberg)-

Faith Development (Fowler)

Unit-1
Teaching Hours:6
Introduction to Psychological Theories
 

Psychosocial development (Erickson)- Development of Cognition (Piaget) -  Moral Development (Kohlberg)-

Faith Development (Fowler)

Unit-1
Teaching Hours:6
Introduction to Psychological Theories
 

Psychosocial development (Erickson)- Development of Cognition (Piaget) -  Moral Development (Kohlberg)-

Faith Development (Fowler)

Unit-1
Teaching Hours:6
Introduction to Psychological Theories
 

Psychosocial development (Erickson)- Development of Cognition (Piaget) -  Moral Development (Kohlberg)-

Faith Development (Fowler)

Unit-1
Teaching Hours:6
Introduction to Psychological Theories
 

Psychosocial development (Erickson)- Development of Cognition (Piaget) -  Moral Development (Kohlberg)-

Faith Development (Fowler)

Unit-2
Teaching Hours:6
Self-Awareness and Analysis
 

Thinking Styles (Cognitive distortions), Interpersonal relationship styles (adult attachment theories), Personality styles (Jung type indicator or Myers Briggs Type Indicator), Coping styles (Emotion-focused and Problem-focused); Analysis: Self-Analysis – Analysing others; Body language –Facial expressions

Unit-2
Teaching Hours:6
Self-Awareness and Analysis
 

Thinking Styles (Cognitive distortions), Interpersonal relationship styles (adult attachment theories), Personality styles (Jung type indicator or Myers Briggs Type Indicator), Coping styles (Emotion-focused and Problem-focused); Analysis: Self-Analysis – Analysing others; Body language –Facial expressions

Unit-2
Teaching Hours:6
Self-Awareness and Analysis
 

Thinking Styles (Cognitive distortions), Interpersonal relationship styles (adult attachment theories), Personality styles (Jung type indicator or Myers Briggs Type Indicator), Coping styles (Emotion-focused and Problem-focused); Analysis: Self-Analysis – Analysing others; Body language –Facial expressions

Unit-2
Teaching Hours:6
Self-Awareness and Analysis
 

Thinking Styles (Cognitive distortions), Interpersonal relationship styles (adult attachment theories), Personality styles (Jung type indicator or Myers Briggs Type Indicator), Coping styles (Emotion-focused and Problem-focused); Analysis: Self-Analysis – Analysing others; Body language –Facial expressions

Unit-2
Teaching Hours:6
Self-Awareness and Analysis
 

Thinking Styles (Cognitive distortions), Interpersonal relationship styles (adult attachment theories), Personality styles (Jung type indicator or Myers Briggs Type Indicator), Coping styles (Emotion-focused and Problem-focused); Analysis: Self-Analysis – Analysing others; Body language –Facial expressions

Unit-2
Teaching Hours:6
Self-Awareness and Analysis
 

Thinking Styles (Cognitive distortions), Interpersonal relationship styles (adult attachment theories), Personality styles (Jung type indicator or Myers Briggs Type Indicator), Coping styles (Emotion-focused and Problem-focused); Analysis: Self-Analysis – Analysing others; Body language –Facial expressions

Unit-2
Teaching Hours:6
Self-Awareness and Analysis
 

Thinking Styles (Cognitive distortions), Interpersonal relationship styles (adult attachment theories), Personality styles (Jung type indicator or Myers Briggs Type Indicator), Coping styles (Emotion-focused and Problem-focused); Analysis: Self-Analysis – Analysing others; Body language –Facial expressions

Unit-2
Teaching Hours:6
Self-Awareness and Analysis
 

Thinking Styles (Cognitive distortions), Interpersonal relationship styles (adult attachment theories), Personality styles (Jung type indicator or Myers Briggs Type Indicator), Coping styles (Emotion-focused and Problem-focused); Analysis: Self-Analysis – Analysing others; Body language –Facial expressions

Unit-2
Teaching Hours:6
Self-Awareness and Analysis
 

Thinking Styles (Cognitive distortions), Interpersonal relationship styles (adult attachment theories), Personality styles (Jung type indicator or Myers Briggs Type Indicator), Coping styles (Emotion-focused and Problem-focused); Analysis: Self-Analysis – Analysing others; Body language –Facial expressions

Unit-2
Teaching Hours:6
Self-Awareness and Analysis
 

Thinking Styles (Cognitive distortions), Interpersonal relationship styles (adult attachment theories), Personality styles (Jung type indicator or Myers Briggs Type Indicator), Coping styles (Emotion-focused and Problem-focused); Analysis: Self-Analysis – Analysing others; Body language –Facial expressions

Unit-2
Teaching Hours:6
Self-Awareness and Analysis
 

Thinking Styles (Cognitive distortions), Interpersonal relationship styles (adult attachment theories), Personality styles (Jung type indicator or Myers Briggs Type Indicator), Coping styles (Emotion-focused and Problem-focused); Analysis: Self-Analysis – Analysing others; Body language –Facial expressions

Unit-2
Teaching Hours:6
Self-Awareness and Analysis
 

Thinking Styles (Cognitive distortions), Interpersonal relationship styles (adult attachment theories), Personality styles (Jung type indicator or Myers Briggs Type Indicator), Coping styles (Emotion-focused and Problem-focused); Analysis: Self-Analysis – Analysing others; Body language –Facial expressions

Unit-2
Teaching Hours:6
Self-Awareness and Analysis
 

Thinking Styles (Cognitive distortions), Interpersonal relationship styles (adult attachment theories), Personality styles (Jung type indicator or Myers Briggs Type Indicator), Coping styles (Emotion-focused and Problem-focused); Analysis: Self-Analysis – Analysing others; Body language –Facial expressions

Unit-2
Teaching Hours:6
Self-Awareness and Analysis
 

Thinking Styles (Cognitive distortions), Interpersonal relationship styles (adult attachment theories), Personality styles (Jung type indicator or Myers Briggs Type Indicator), Coping styles (Emotion-focused and Problem-focused); Analysis: Self-Analysis – Analysing others; Body language –Facial expressions

Unit-3
Teaching Hours:5
Social Influences
 

Conformity: Asch’s Research on Conformity-Factors Affecting Conformity; Compliance -The Underlying Principles - Ingratiation;Obedience to Authority-Destructive Obedience

Unit-3
Teaching Hours:5
Social Influences
 

Conformity: Asch’s Research on Conformity-Factors Affecting Conformity; Compliance -The Underlying Principles - Ingratiation;Obedience to Authority-Destructive Obedience

Unit-3
Teaching Hours:5
Social Influences
 

Conformity: Asch’s Research on Conformity-Factors Affecting Conformity; Compliance -The Underlying Principles - Ingratiation;Obedience to Authority-Destructive Obedience

Unit-3
Teaching Hours:5
Social Influences
 

Conformity: Asch’s Research on Conformity-Factors Affecting Conformity; Compliance -The Underlying Principles - Ingratiation;Obedience to Authority-Destructive Obedience

Unit-3
Teaching Hours:5
Social Influences
 

Conformity: Asch’s Research on Conformity-Factors Affecting Conformity; Compliance -The Underlying Principles - Ingratiation;Obedience to Authority-Destructive Obedience

Unit-3
Teaching Hours:5
Social Influences
 

Conformity: Asch’s Research on Conformity-Factors Affecting Conformity; Compliance -The Underlying Principles - Ingratiation;Obedience to Authority-Destructive Obedience

Unit-3
Teaching Hours:5
Social Influences
 

Conformity: Asch’s Research on Conformity-Factors Affecting Conformity; Compliance -The Underlying Principles - Ingratiation;Obedience to Authority-Destructive Obedience

Unit-3
Teaching Hours:5
Social Influences
 

Conformity: Asch’s Research on Conformity-Factors Affecting Conformity; Compliance -The Underlying Principles - Ingratiation;Obedience to Authority-Destructive Obedience

Unit-3
Teaching Hours:5
Social Influences
 

Conformity: Asch’s Research on Conformity-Factors Affecting Conformity; Compliance -The Underlying Principles - Ingratiation;Obedience to Authority-Destructive Obedience

Unit-3
Teaching Hours:5
Social Influences
 

Conformity: Asch’s Research on Conformity-Factors Affecting Conformity; Compliance -The Underlying Principles - Ingratiation;Obedience to Authority-Destructive Obedience

Unit-3
Teaching Hours:5
Social Influences
 

Conformity: Asch’s Research on Conformity-Factors Affecting Conformity; Compliance -The Underlying Principles - Ingratiation;Obedience to Authority-Destructive Obedience

Unit-3
Teaching Hours:5
Social Influences
 

Conformity: Asch’s Research on Conformity-Factors Affecting Conformity; Compliance -The Underlying Principles - Ingratiation;Obedience to Authority-Destructive Obedience

Unit-3
Teaching Hours:5
Social Influences
 

Conformity: Asch’s Research on Conformity-Factors Affecting Conformity; Compliance -The Underlying Principles - Ingratiation;Obedience to Authority-Destructive Obedience

Unit-3
Teaching Hours:5
Social Influences
 

Conformity: Asch’s Research on Conformity-Factors Affecting Conformity; Compliance -The Underlying Principles - Ingratiation;Obedience to Authority-Destructive Obedience

Unit-4
Teaching Hours:7
Approaches to work motivation and job design
 

Overview of motivation - Need theories - Expectancy theory – Justice and citizenship theories - Goal-setting theory - Goals and self -regulation - Self-concept and individual differences in motivation - Pay and motivation - Motivation through job redesign   

Unit-4
Teaching Hours:7
Approaches to work motivation and job design
 

Overview of motivation - Need theories - Expectancy theory – Justice and citizenship theories - Goal-setting theory - Goals and self -regulation - Self-concept and individual differences in motivation - Pay and motivation - Motivation through job redesign   

Unit-4
Teaching Hours:7
Approaches to work motivation and job design
 

Overview of motivation - Need theories - Expectancy theory – Justice and citizenship theories - Goal-setting theory - Goals and self -regulation - Self-concept and individual differences in motivation - Pay and motivation - Motivation through job redesign   

Unit-4
Teaching Hours:7
Approaches to work motivation and job design
 

Overview of motivation - Need theories - Expectancy theory – Justice and citizenship theories - Goal-setting theory - Goals and self -regulation - Self-concept and individual differences in motivation - Pay and motivation - Motivation through job redesign   

Unit-4
Teaching Hours:7
Approaches to work motivation and job design
 

Overview of motivation - Need theories - Expectancy theory – Justice and citizenship theories - Goal-setting theory - Goals and self -regulation - Self-concept and individual differences in motivation - Pay and motivation - Motivation through job redesign   

Unit-4
Teaching Hours:7
Approaches to work motivation and job design
 

Overview of motivation - Need theories - Expectancy theory – Justice and citizenship theories - Goal-setting theory - Goals and self -regulation - Self-concept and individual differences in motivation - Pay and motivation - Motivation through job redesign   

Unit-4
Teaching Hours:7
Approaches to work motivation and job design
 

Overview of motivation - Need theories - Expectancy theory – Justice and citizenship theories - Goal-setting theory - Goals and self -regulation - Self-concept and individual differences in motivation - Pay and motivation - Motivation through job redesign   

Unit-4
Teaching Hours:7
Approaches to work motivation and job design
 

Overview of motivation - Need theories - Expectancy theory – Justice and citizenship theories - Goal-setting theory - Goals and self -regulation - Self-concept and individual differences in motivation - Pay and motivation - Motivation through job redesign   

Unit-4
Teaching Hours:7
Approaches to work motivation and job design
 

Overview of motivation - Need theories - Expectancy theory – Justice and citizenship theories - Goal-setting theory - Goals and self -regulation - Self-concept and individual differences in motivation - Pay and motivation - Motivation through job redesign   

Unit-4
Teaching Hours:7
Approaches to work motivation and job design
 

Overview of motivation - Need theories - Expectancy theory – Justice and citizenship theories - Goal-setting theory - Goals and self -regulation - Self-concept and individual differences in motivation - Pay and motivation - Motivation through job redesign   

Unit-4
Teaching Hours:7
Approaches to work motivation and job design
 

Overview of motivation - Need theories - Expectancy theory – Justice and citizenship theories - Goal-setting theory - Goals and self -regulation - Self-concept and individual differences in motivation - Pay and motivation - Motivation through job redesign   

Unit-4
Teaching Hours:7
Approaches to work motivation and job design
 

Overview of motivation - Need theories - Expectancy theory – Justice and citizenship theories - Goal-setting theory - Goals and self -regulation - Self-concept and individual differences in motivation - Pay and motivation - Motivation through job redesign   

Unit-4
Teaching Hours:7
Approaches to work motivation and job design
 

Overview of motivation - Need theories - Expectancy theory – Justice and citizenship theories - Goal-setting theory - Goals and self -regulation - Self-concept and individual differences in motivation - Pay and motivation - Motivation through job redesign   

Unit-4
Teaching Hours:7
Approaches to work motivation and job design
 

Overview of motivation - Need theories - Expectancy theory – Justice and citizenship theories - Goal-setting theory - Goals and self -regulation - Self-concept and individual differences in motivation - Pay and motivation - Motivation through job redesign   

Unit-5
Teaching Hours:6
Professional development and Diversity
 

Coaching skills, Mentoring skills, Effective feedback, Developing a competency framework,  Self Determination Theory (Ryan and Deci),  Burke –Litwin change model. Diversity and challenge Cross-cultural communication, respecting diversity, Intercultural awareness, Multicultural awareness.

Unit-5
Teaching Hours:6
Professional development and Diversity
 

Coaching skills, Mentoring skills, Effective feedback, Developing a competency framework,  Self Determination Theory (Ryan and Deci),  Burke –Litwin change model. Diversity and challenge Cross-cultural communication, respecting diversity, Intercultural awareness, Multicultural awareness.

Unit-5
Teaching Hours:6
Professional development and Diversity
 

Coaching skills, Mentoring skills, Effective feedback, Developing a competency framework,  Self Determination Theory (Ryan and Deci),  Burke –Litwin change model. Diversity and challenge Cross-cultural communication, respecting diversity, Intercultural awareness, Multicultural awareness.

Unit-5
Teaching Hours:6
Professional development and Diversity
 

Coaching skills, Mentoring skills, Effective feedback, Developing a competency framework,  Self Determination Theory (Ryan and Deci),  Burke –Litwin change model. Diversity and challenge Cross-cultural communication, respecting diversity, Intercultural awareness, Multicultural awareness.

Unit-5
Teaching Hours:6
Professional development and Diversity
 

Coaching skills, Mentoring skills, Effective feedback, Developing a competency framework,  Self Determination Theory (Ryan and Deci),  Burke –Litwin change model. Diversity and challenge Cross-cultural communication, respecting diversity, Intercultural awareness, Multicultural awareness.

Unit-5
Teaching Hours:6
Professional development and Diversity
 

Coaching skills, Mentoring skills, Effective feedback, Developing a competency framework,  Self Determination Theory (Ryan and Deci),  Burke –Litwin change model. Diversity and challenge Cross-cultural communication, respecting diversity, Intercultural awareness, Multicultural awareness.

Unit-5
Teaching Hours:6
Professional development and Diversity
 

Coaching skills, Mentoring skills, Effective feedback, Developing a competency framework,  Self Determination Theory (Ryan and Deci),  Burke –Litwin change model. Diversity and challenge Cross-cultural communication, respecting diversity, Intercultural awareness, Multicultural awareness.

Unit-5
Teaching Hours:6
Professional development and Diversity
 

Coaching skills, Mentoring skills, Effective feedback, Developing a competency framework,  Self Determination Theory (Ryan and Deci),  Burke –Litwin change model. Diversity and challenge Cross-cultural communication, respecting diversity, Intercultural awareness, Multicultural awareness.

Unit-5
Teaching Hours:6
Professional development and Diversity
 

Coaching skills, Mentoring skills, Effective feedback, Developing a competency framework,  Self Determination Theory (Ryan and Deci),  Burke –Litwin change model. Diversity and challenge Cross-cultural communication, respecting diversity, Intercultural awareness, Multicultural awareness.

Unit-5
Teaching Hours:6
Professional development and Diversity
 

Coaching skills, Mentoring skills, Effective feedback, Developing a competency framework,  Self Determination Theory (Ryan and Deci),  Burke –Litwin change model. Diversity and challenge Cross-cultural communication, respecting diversity, Intercultural awareness, Multicultural awareness.

Unit-5
Teaching Hours:6
Professional development and Diversity
 

Coaching skills, Mentoring skills, Effective feedback, Developing a competency framework,  Self Determination Theory (Ryan and Deci),  Burke –Litwin change model. Diversity and challenge Cross-cultural communication, respecting diversity, Intercultural awareness, Multicultural awareness.

Unit-5
Teaching Hours:6
Professional development and Diversity
 

Coaching skills, Mentoring skills, Effective feedback, Developing a competency framework,  Self Determination Theory (Ryan and Deci),  Burke –Litwin change model. Diversity and challenge Cross-cultural communication, respecting diversity, Intercultural awareness, Multicultural awareness.

Unit-5
Teaching Hours:6
Professional development and Diversity
 

Coaching skills, Mentoring skills, Effective feedback, Developing a competency framework,  Self Determination Theory (Ryan and Deci),  Burke –Litwin change model. Diversity and challenge Cross-cultural communication, respecting diversity, Intercultural awareness, Multicultural awareness.

Unit-5
Teaching Hours:6
Professional development and Diversity
 

Coaching skills, Mentoring skills, Effective feedback, Developing a competency framework,  Self Determination Theory (Ryan and Deci),  Burke –Litwin change model. Diversity and challenge Cross-cultural communication, respecting diversity, Intercultural awareness, Multicultural awareness.

Text Books And Reference Books:

Essential Readings:

Baron, R. A., &amp; Branscombe, N. R. (2006). Social psychology. Pearson Education India.

Nelson Goud and Abe Arkoff. (2005), Psychology and Personal Growth, Edition, Allyn and Bacon

Nelson Jones. (2006), Human Relationship Skills: Coaching and self-coaching, 4th edition,

Routledge,

 

Essential Reading / Recommended Reading

Recommended Reading:

Baron, R. A., (2012), Psychology, 5th edition. Pearson Education India.

Evaluation Pattern

CIA

CIA 1

CIA 2

CIA 3

Attendance

ESE

Marks

10

25

10

05

50

CIA 1: Individual Assignment

CIA 2: Mid-Semester Examinations (Written Examination)

 Pattern: Section A  5x02=10 marks

              Section B  4x05 = 20 marks

              Section C  2x10 =20 marks

CIA 3: Group Assignment

End Semester Examination (Written Examination)

Pattern: Section A  5x02 =10 marks

            Section B  4x05 = 20 marks

            Section C  2x10 =20 marks 

BTGE651 - DATA ANALYTICS THROUGH SPSS (2022 Batch)

Total Teaching Hours for Semester:30
No of Lecture Hours/Week:2
Max Marks:100
Credits:2

Course Objectives/Course Description

 

Course Description
Data Analysis using SPSS is specially designed to provide the requisite knowledge and skills in Data Analytics. The course covers concepts of Basics about Statistics, Data handling, Data Visualization, Statistical analysis, etc. This course will build a base for advance data analysis skills.

Course objectives

After the completion of the course, you should be able to:


a. Understand basic concepts of statistics and computer software SPSS
b. Select appropriate Statistical test for particular type of data
c. Recognize and interpret the output from statistical analysis

Learning Outcome

CO1: Students will understand the concepts involved for analyzing Business data

CO2: Students will be able to understand how to use software like SPSS to analyse data

CO3: Students will be able to appreciate the use of Data Analytics for business decision making

Unit-1
Teaching Hours:2
Introduction to data Analysis
 

Introduction to Statistics and SPSS package viz.,, Types of data, data editing, coding, cleaning, outliers, missing data, import, export, data labeling, transforming data.

Unit-1
Teaching Hours:2
Introduction to data Analysis
 

Introduction to Statistics and SPSS package viz.,, Types of data, data editing, coding, cleaning, outliers, missing data, import, export, data labeling, transforming data.

Unit-1
Teaching Hours:2
Introduction to data Analysis
 

Introduction to Statistics and SPSS package viz.,, Types of data, data editing, coding, cleaning, outliers, missing data, import, export, data labeling, transforming data.

Unit-1
Teaching Hours:2
Introduction to data Analysis
 

Introduction to Statistics and SPSS package viz.,, Types of data, data editing, coding, cleaning, outliers, missing data, import, export, data labeling, transforming data.

Unit-1
Teaching Hours:2
Introduction to data Analysis
 

Introduction to Statistics and SPSS package viz.,, Types of data, data editing, coding, cleaning, outliers, missing data, import, export, data labeling, transforming data.

Unit-1
Teaching Hours:2
Introduction to data Analysis
 

Introduction to Statistics and SPSS package viz.,, Types of data, data editing, coding, cleaning, outliers, missing data, import, export, data labeling, transforming data.

Unit-1
Teaching Hours:2
Introduction to data Analysis
 

Introduction to Statistics and SPSS package viz.,, Types of data, data editing, coding, cleaning, outliers, missing data, import, export, data labeling, transforming data.

Unit-1
Teaching Hours:2
Introduction to data Analysis
 

Introduction to Statistics and SPSS package viz.,, Types of data, data editing, coding, cleaning, outliers, missing data, import, export, data labeling, transforming data.

Unit-1
Teaching Hours:2
Introduction to data Analysis
 

Introduction to Statistics and SPSS package viz.,, Types of data, data editing, coding, cleaning, outliers, missing data, import, export, data labeling, transforming data.

Unit-1
Teaching Hours:2
Introduction to data Analysis
 

Introduction to Statistics and SPSS package viz.,, Types of data, data editing, coding, cleaning, outliers, missing data, import, export, data labeling, transforming data.

Unit-1
Teaching Hours:2
Introduction to data Analysis
 

Introduction to Statistics and SPSS package viz.,, Types of data, data editing, coding, cleaning, outliers, missing data, import, export, data labeling, transforming data.

Unit-1
Teaching Hours:2
Introduction to data Analysis
 

Introduction to Statistics and SPSS package viz.,, Types of data, data editing, coding, cleaning, outliers, missing data, import, export, data labeling, transforming data.

Unit-1
Teaching Hours:2
Introduction to data Analysis
 

Introduction to Statistics and SPSS package viz.,, Types of data, data editing, coding, cleaning, outliers, missing data, import, export, data labeling, transforming data.

Unit-1
Teaching Hours:2
Introduction to data Analysis
 

Introduction to Statistics and SPSS package viz.,, Types of data, data editing, coding, cleaning, outliers, missing data, import, export, data labeling, transforming data.

Unit-2
Teaching Hours:2
Data Visualization
 

Graphs, scatter plot, charts, frequency tables, histogram, Boxplot, pie chart, etc

Unit-2
Teaching Hours:2
Data Visualization
 

Graphs, scatter plot, charts, frequency tables, histogram, Boxplot, pie chart, etc

Unit-2
Teaching Hours:2
Data Visualization
 

Graphs, scatter plot, charts, frequency tables, histogram, Boxplot, pie chart, etc

Unit-2
Teaching Hours:2
Data Visualization
 

Graphs, scatter plot, charts, frequency tables, histogram, Boxplot, pie chart, etc

Unit-2
Teaching Hours:2
Data Visualization
 

Graphs, scatter plot, charts, frequency tables, histogram, Boxplot, pie chart, etc

Unit-2
Teaching Hours:2
Data Visualization
 

Graphs, scatter plot, charts, frequency tables, histogram, Boxplot, pie chart, etc

Unit-2
Teaching Hours:2
Data Visualization
 

Graphs, scatter plot, charts, frequency tables, histogram, Boxplot, pie chart, etc

Unit-2
Teaching Hours:2
Data Visualization
 

Graphs, scatter plot, charts, frequency tables, histogram, Boxplot, pie chart, etc

Unit-2
Teaching Hours:2
Data Visualization
 

Graphs, scatter plot, charts, frequency tables, histogram, Boxplot, pie chart, etc

Unit-2
Teaching Hours:2
Data Visualization
 

Graphs, scatter plot, charts, frequency tables, histogram, Boxplot, pie chart, etc

Unit-2
Teaching Hours:2
Data Visualization
 

Graphs, scatter plot, charts, frequency tables, histogram, Boxplot, pie chart, etc

Unit-2
Teaching Hours:2
Data Visualization
 

Graphs, scatter plot, charts, frequency tables, histogram, Boxplot, pie chart, etc

Unit-2
Teaching Hours:2
Data Visualization
 

Graphs, scatter plot, charts, frequency tables, histogram, Boxplot, pie chart, etc

Unit-2
Teaching Hours:2
Data Visualization
 

Graphs, scatter plot, charts, frequency tables, histogram, Boxplot, pie chart, etc

Unit-3
Teaching Hours:4
Descriptive Statistics and Hypothesis testing
 

Basic statistics like mean, median, mode, SD, Examine relationship between variables example correlation, regression, etc., Compare groups to determine if there are significant differences between these groups example T-test, ANOVA etc., and to measure the association/independence using Chi-square., etc.

Unit-3
Teaching Hours:4
Descriptive Statistics and Hypothesis testing
 

Basic statistics like mean, median, mode, SD, Examine relationship between variables example correlation, regression, etc., Compare groups to determine if there are significant differences between these groups example T-test, ANOVA etc., and to measure the association/independence using Chi-square., etc.

Unit-3
Teaching Hours:4
Descriptive Statistics and Hypothesis testing
 

Basic statistics like mean, median, mode, SD, Examine relationship between variables example correlation, regression, etc., Compare groups to determine if there are significant differences between these groups example T-test, ANOVA etc., and to measure the association/independence using Chi-square., etc.

Unit-3
Teaching Hours:4
Descriptive Statistics and Hypothesis testing
 

Basic statistics like mean, median, mode, SD, Examine relationship between variables example correlation, regression, etc., Compare groups to determine if there are significant differences between these groups example T-test, ANOVA etc., and to measure the association/independence using Chi-square., etc.

Unit-3
Teaching Hours:4
Descriptive Statistics and Hypothesis testing
 

Basic statistics like mean, median, mode, SD, Examine relationship between variables example correlation, regression, etc., Compare groups to determine if there are significant differences between these groups example T-test, ANOVA etc., and to measure the association/independence using Chi-square., etc.

Unit-3
Teaching Hours:4
Descriptive Statistics and Hypothesis testing
 

Basic statistics like mean, median, mode, SD, Examine relationship between variables example correlation, regression, etc., Compare groups to determine if there are significant differences between these groups example T-test, ANOVA etc., and to measure the association/independence using Chi-square., etc.

Unit-3
Teaching Hours:4
Descriptive Statistics and Hypothesis testing
 

Basic statistics like mean, median, mode, SD, Examine relationship between variables example correlation, regression, etc., Compare groups to determine if there are significant differences between these groups example T-test, ANOVA etc., and to measure the association/independence using Chi-square., etc.

Unit-3
Teaching Hours:4
Descriptive Statistics and Hypothesis testing
 

Basic statistics like mean, median, mode, SD, Examine relationship between variables example correlation, regression, etc., Compare groups to determine if there are significant differences between these groups example T-test, ANOVA etc., and to measure the association/independence using Chi-square., etc.

Unit-3
Teaching Hours:4
Descriptive Statistics and Hypothesis testing
 

Basic statistics like mean, median, mode, SD, Examine relationship between variables example correlation, regression, etc., Compare groups to determine if there are significant differences between these groups example T-test, ANOVA etc., and to measure the association/independence using Chi-square., etc.

Unit-3
Teaching Hours:4
Descriptive Statistics and Hypothesis testing
 

Basic statistics like mean, median, mode, SD, Examine relationship between variables example correlation, regression, etc., Compare groups to determine if there are significant differences between these groups example T-test, ANOVA etc., and to measure the association/independence using Chi-square., etc.

Unit-3
Teaching Hours:4
Descriptive Statistics and Hypothesis testing
 

Basic statistics like mean, median, mode, SD, Examine relationship between variables example correlation, regression, etc., Compare groups to determine if there are significant differences between these groups example T-test, ANOVA etc., and to measure the association/independence using Chi-square., etc.

Unit-3
Teaching Hours:4
Descriptive Statistics and Hypothesis testing
 

Basic statistics like mean, median, mode, SD, Examine relationship between variables example correlation, regression, etc., Compare groups to determine if there are significant differences between these groups example T-test, ANOVA etc., and to measure the association/independence using Chi-square., etc.

Unit-3
Teaching Hours:4
Descriptive Statistics and Hypothesis testing
 

Basic statistics like mean, median, mode, SD, Examine relationship between variables example correlation, regression, etc., Compare groups to determine if there are significant differences between these groups example T-test, ANOVA etc., and to measure the association/independence using Chi-square., etc.

Unit-3
Teaching Hours:4
Descriptive Statistics and Hypothesis testing
 

Basic statistics like mean, median, mode, SD, Examine relationship between variables example correlation, regression, etc., Compare groups to determine if there are significant differences between these groups example T-test, ANOVA etc., and to measure the association/independence using Chi-square., etc.

Unit-4
Teaching Hours:4
Logistic Regression
 

Application of logistic regression in SPSS using case study

Unit-4
Teaching Hours:4
Logistic Regression
 

Application of logistic regression in SPSS using case study

Unit-4
Teaching Hours:4
Logistic Regression
 

Application of logistic regression in SPSS using case study

Unit-4
Teaching Hours:4
Logistic Regression
 

Application of logistic regression in SPSS using case study

Unit-4
Teaching Hours:4
Logistic Regression
 

Application of logistic regression in SPSS using case study

Unit-4
Teaching Hours:4
Logistic Regression
 

Application of logistic regression in SPSS using case study

Unit-4
Teaching Hours:4
Logistic Regression
 

Application of logistic regression in SPSS using case study

Unit-4
Teaching Hours:4
Logistic Regression
 

Application of logistic regression in SPSS using case study

Unit-4
Teaching Hours:4
Logistic Regression
 

Application of logistic regression in SPSS using case study

Unit-4
Teaching Hours:4
Logistic Regression
 

Application of logistic regression in SPSS using case study

Unit-4
Teaching Hours:4
Logistic Regression
 

Application of logistic regression in SPSS using case study

Unit-4
Teaching Hours:4
Logistic Regression
 

Application of logistic regression in SPSS using case study

Unit-4
Teaching Hours:4
Logistic Regression
 

Application of logistic regression in SPSS using case study

Unit-4
Teaching Hours:4
Logistic Regression
 

Application of logistic regression in SPSS using case study

Unit-5
Teaching Hours:4
Factor analysis
 

Application of factor analysis in SPSS using case study

Unit-5
Teaching Hours:4
Factor analysis
 

Application of factor analysis in SPSS using case study

Unit-5
Teaching Hours:4
Factor analysis
 

Application of factor analysis in SPSS using case study

Unit-5
Teaching Hours:4
Factor analysis
 

Application of factor analysis in SPSS using case study

Unit-5
Teaching Hours:4
Factor analysis
 

Application of factor analysis in SPSS using case study

Unit-5
Teaching Hours:4
Factor analysis
 

Application of factor analysis in SPSS using case study

Unit-5
Teaching Hours:4
Factor analysis
 

Application of factor analysis in SPSS using case study

Unit-5
Teaching Hours:4
Factor analysis
 

Application of factor analysis in SPSS using case study

Unit-5
Teaching Hours:4
Factor analysis
 

Application of factor analysis in SPSS using case study

Unit-5
Teaching Hours:4
Factor analysis
 

Application of factor analysis in SPSS using case study

Unit-5
Teaching Hours:4
Factor analysis
 

Application of factor analysis in SPSS using case study

Unit-5
Teaching Hours:4
Factor analysis
 

Application of factor analysis in SPSS using case study

Unit-5
Teaching Hours:4
Factor analysis
 

Application of factor analysis in SPSS using case study

Unit-5
Teaching Hours:4
Factor analysis
 

Application of factor analysis in SPSS using case study

Unit-6
Teaching Hours:14
Cluster Analysis and Discriminant analysis
 

 

Application of Cluster analysis and Discriminant in SPSS using case study

Unit-6
Teaching Hours:14
Cluster Analysis and Discriminant analysis
 

 

Application of Cluster analysis and Discriminant in SPSS using case study

Unit-6
Teaching Hours:14
Cluster Analysis and Discriminant analysis
 

 

Application of Cluster analysis and Discriminant in SPSS using case study

Unit-6
Teaching Hours:14
Cluster Analysis and Discriminant analysis
 

 

Application of Cluster analysis and Discriminant in SPSS using case study

Unit-6
Teaching Hours:14
Cluster Analysis and Discriminant analysis
 

 

Application of Cluster analysis and Discriminant in SPSS using case study

Unit-6
Teaching Hours:14
Cluster Analysis and Discriminant analysis
 

 

Application of Cluster analysis and Discriminant in SPSS using case study

Unit-6
Teaching Hours:14
Cluster Analysis and Discriminant analysis
 

 

Application of Cluster analysis and Discriminant in SPSS using case study

Unit-6
Teaching Hours:14
Cluster Analysis and Discriminant analysis
 

 

Application of Cluster analysis and Discriminant in SPSS using case study

Unit-6
Teaching Hours:14
Cluster Analysis and Discriminant analysis
 

 

Application of Cluster analysis and Discriminant in SPSS using case study

Unit-6
Teaching Hours:14
Cluster Analysis and Discriminant analysis
 

 

Application of Cluster analysis and Discriminant in SPSS using case study

Unit-6
Teaching Hours:14
Cluster Analysis and Discriminant analysis
 

 

Application of Cluster analysis and Discriminant in SPSS using case study

Unit-6
Teaching Hours:14
Cluster Analysis and Discriminant analysis
 

 

Application of Cluster analysis and Discriminant in SPSS using case study

Unit-6
Teaching Hours:14
Cluster Analysis and Discriminant analysis
 

 

Application of Cluster analysis and Discriminant in SPSS using case study

Unit-6
Teaching Hours:14
Cluster Analysis and Discriminant analysis
 

 

Application of Cluster analysis and Discriminant in SPSS using case study

Text Books And Reference Books:

 

1.      Andy field, “Discovering Statistics Using SPSS”, SAGE Publications, Second Edition, 2006.

 

Essential Reading / Recommended Reading

 

1.      Darren George|Paul Mallery, “SPSS for Windows Step by Step”, Pearson, Tenth Edition, 2012.

 

Evaluation Pattern

 

CIA-1

Unit 1,2,3,4

Mid Term

Unit1,2,3,4,5

CIA-3

Unit 6

 

BTGE652 - DIGITAL MARKETING (2022 Batch)

Total Teaching Hours for Semester:30
No of Lecture Hours/Week:2
Max Marks:100
Credits:2

Course Objectives/Course Description

 

 

 

Course Description:

 

Developing a successful digital marketing strategy and implementation is both an art and science. It involves in-depth knowledge of dynamics of new media (Social Media, Mobile) and utilizing the right resources and marketing skills to design and launch successful customer engagement campaigns. Digital Marketing course has been designed to help students to understand both functional and management roles required to plan and execute effective Digital Marketing campaigns. The course also helps students gain an insight how to plan and implement Digital Marketing initiatives

 

Course Objectives:

 

·         To apply the basics of digital marketing in the contemporary business scenario

 

·         To utilize google ads for promotional activities

 

·         To contrast various social media marketing platforms and activities 

 

·         To analyse the search engine optimization and search engine marketing strategies

To explain analytics pertaining to digital marketing initiatives

 

Learning Outcome

CO1: Plan a digital marketing campaign as per client requirements

CO2: Apply google ads in digital campaigns

CO3: Analyse the appropriateness of social media marketing strategies with respect to campaign objectives

CO4: Examine the search engine optimization efforts

CO5: Appraise the digital marketing analytics related to the project

Unit-1
Teaching Hours:5
Introduction to Digital Marketing
 

 

Digital Marketing: Origin of digital marketing; Traditional Vs Digital Marketing; Internet Users in India; Grehan’s 4Ps of digital marketing; The consumer decision journey; The P-O-E-M Framework; The digital landscape; Digital Marketing Plan.

Ethical Challenges: Frauds on the Web, Data and Identity Theft, Issue of Privacy. Information Technology Act, 2000.

Unit-1
Teaching Hours:5
Introduction to Digital Marketing
 

 

Digital Marketing: Origin of digital marketing; Traditional Vs Digital Marketing; Internet Users in India; Grehan’s 4Ps of digital marketing; The consumer decision journey; The P-O-E-M Framework; The digital landscape; Digital Marketing Plan.

Ethical Challenges: Frauds on the Web, Data and Identity Theft, Issue of Privacy. Information Technology Act, 2000.

Unit-1
Teaching Hours:5
Introduction to Digital Marketing
 

 

Digital Marketing: Origin of digital marketing; Traditional Vs Digital Marketing; Internet Users in India; Grehan’s 4Ps of digital marketing; The consumer decision journey; The P-O-E-M Framework; The digital landscape; Digital Marketing Plan.

Ethical Challenges: Frauds on the Web, Data and Identity Theft, Issue of Privacy. Information Technology Act, 2000.

Unit-1
Teaching Hours:5
Introduction to Digital Marketing
 

 

Digital Marketing: Origin of digital marketing; Traditional Vs Digital Marketing; Internet Users in India; Grehan’s 4Ps of digital marketing; The consumer decision journey; The P-O-E-M Framework; The digital landscape; Digital Marketing Plan.

Ethical Challenges: Frauds on the Web, Data and Identity Theft, Issue of Privacy. Information Technology Act, 2000.

Unit-1
Teaching Hours:5
Introduction to Digital Marketing
 

 

Digital Marketing: Origin of digital marketing; Traditional Vs Digital Marketing; Internet Users in India; Grehan’s 4Ps of digital marketing; The consumer decision journey; The P-O-E-M Framework; The digital landscape; Digital Marketing Plan.

Ethical Challenges: Frauds on the Web, Data and Identity Theft, Issue of Privacy. Information Technology Act, 2000.

Unit-1
Teaching Hours:5
Introduction to Digital Marketing
 

 

Digital Marketing: Origin of digital marketing; Traditional Vs Digital Marketing; Internet Users in India; Grehan’s 4Ps of digital marketing; The consumer decision journey; The P-O-E-M Framework; The digital landscape; Digital Marketing Plan.

Ethical Challenges: Frauds on the Web, Data and Identity Theft, Issue of Privacy. Information Technology Act, 2000.

Unit-1
Teaching Hours:5
Introduction to Digital Marketing
 

 

Digital Marketing: Origin of digital marketing; Traditional Vs Digital Marketing; Internet Users in India; Grehan’s 4Ps of digital marketing; The consumer decision journey; The P-O-E-M Framework; The digital landscape; Digital Marketing Plan.

Ethical Challenges: Frauds on the Web, Data and Identity Theft, Issue of Privacy. Information Technology Act, 2000.

Unit-1
Teaching Hours:5
Introduction to Digital Marketing
 

 

Digital Marketing: Origin of digital marketing; Traditional Vs Digital Marketing; Internet Users in India; Grehan’s 4Ps of digital marketing; The consumer decision journey; The P-O-E-M Framework; The digital landscape; Digital Marketing Plan.

Ethical Challenges: Frauds on the Web, Data and Identity Theft, Issue of Privacy. Information Technology Act, 2000.

Unit-1
Teaching Hours:5
Introduction to Digital Marketing
 

 

Digital Marketing: Origin of digital marketing; Traditional Vs Digital Marketing; Internet Users in India; Grehan’s 4Ps of digital marketing; The consumer decision journey; The P-O-E-M Framework; The digital landscape; Digital Marketing Plan.

Ethical Challenges: Frauds on the Web, Data and Identity Theft, Issue of Privacy. Information Technology Act, 2000.

Unit-1
Teaching Hours:5
Introduction to Digital Marketing
 

 

Digital Marketing: Origin of digital marketing; Traditional Vs Digital Marketing; Internet Users in India; Grehan’s 4Ps of digital marketing; The consumer decision journey; The P-O-E-M Framework; The digital landscape; Digital Marketing Plan.

Ethical Challenges: Frauds on the Web, Data and Identity Theft, Issue of Privacy. Information Technology Act, 2000.

Unit-1
Teaching Hours:5
Introduction to Digital Marketing
 

 

Digital Marketing: Origin of digital marketing; Traditional Vs Digital Marketing; Internet Users in India; Grehan’s 4Ps of digital marketing; The consumer decision journey; The P-O-E-M Framework; The digital landscape; Digital Marketing Plan.

Ethical Challenges: Frauds on the Web, Data and Identity Theft, Issue of Privacy. Information Technology Act, 2000.

Unit-1
Teaching Hours:5
Introduction to Digital Marketing
 

 

Digital Marketing: Origin of digital marketing; Traditional Vs Digital Marketing; Internet Users in India; Grehan’s 4Ps of digital marketing; The consumer decision journey; The P-O-E-M Framework; The digital landscape; Digital Marketing Plan.

Ethical Challenges: Frauds on the Web, Data and Identity Theft, Issue of Privacy. Information Technology Act, 2000.

Unit-1
Teaching Hours:5
Introduction to Digital Marketing
 

 

Digital Marketing: Origin of digital marketing; Traditional Vs Digital Marketing; Internet Users in India; Grehan’s 4Ps of digital marketing; The consumer decision journey; The P-O-E-M Framework; The digital landscape; Digital Marketing Plan.

Ethical Challenges: Frauds on the Web, Data and Identity Theft, Issue of Privacy. Information Technology Act, 2000.

Unit-1
Teaching Hours:5
Introduction to Digital Marketing
 

 

Digital Marketing: Origin of digital marketing; Traditional Vs Digital Marketing; Internet Users in India; Grehan’s 4Ps of digital marketing; The consumer decision journey; The P-O-E-M Framework; The digital landscape; Digital Marketing Plan.

Ethical Challenges: Frauds on the Web, Data and Identity Theft, Issue of Privacy. Information Technology Act, 2000.

Unit-2
Teaching Hours:6
Search Engine Marketing
 

 

Why pay for Search Advertising? Understanding Ad Placement; Understanding Ad ranks; Creating the first Ad campaign; Enhancing the Ad campaigns; Performance reports. Google Adsense.

Concept of Display Advertising; Types of display Ads; Buying Models; Display Plan; Targeting – Contextual targeting- Placement Targeting-Remarketing- Interest categories- Geographic Language Tagging; What makes a good Ad? Programmatic digital advertising; Analytics tools – viewability, on target reach, Ad fraud, Brand Health.

Unit-2
Teaching Hours:6
Search Engine Marketing
 

 

Why pay for Search Advertising? Understanding Ad Placement; Understanding Ad ranks; Creating the first Ad campaign; Enhancing the Ad campaigns; Performance reports. Google Adsense.

Concept of Display Advertising; Types of display Ads; Buying Models; Display Plan; Targeting – Contextual targeting- Placement Targeting-Remarketing- Interest categories- Geographic Language Tagging; What makes a good Ad? Programmatic digital advertising; Analytics tools – viewability, on target reach, Ad fraud, Brand Health.

Unit-2
Teaching Hours:6
Search Engine Marketing
 

 

Why pay for Search Advertising? Understanding Ad Placement; Understanding Ad ranks; Creating the first Ad campaign; Enhancing the Ad campaigns; Performance reports. Google Adsense.

Concept of Display Advertising; Types of display Ads; Buying Models; Display Plan; Targeting – Contextual targeting- Placement Targeting-Remarketing- Interest categories- Geographic Language Tagging; What makes a good Ad? Programmatic digital advertising; Analytics tools – viewability, on target reach, Ad fraud, Brand Health.

Unit-2
Teaching Hours:6
Search Engine Marketing
 

 

Why pay for Search Advertising? Understanding Ad Placement; Understanding Ad ranks; Creating the first Ad campaign; Enhancing the Ad campaigns; Performance reports. Google Adsense.

Concept of Display Advertising; Types of display Ads; Buying Models; Display Plan; Targeting – Contextual targeting- Placement Targeting-Remarketing- Interest categories- Geographic Language Tagging; What makes a good Ad? Programmatic digital advertising; Analytics tools – viewability, on target reach, Ad fraud, Brand Health.

Unit-2
Teaching Hours:6
Search Engine Marketing
 

 

Why pay for Search Advertising? Understanding Ad Placement; Understanding Ad ranks; Creating the first Ad campaign; Enhancing the Ad campaigns; Performance reports. Google Adsense.

Concept of Display Advertising; Types of display Ads; Buying Models; Display Plan; Targeting – Contextual targeting- Placement Targeting-Remarketing- Interest categories- Geographic Language Tagging; What makes a good Ad? Programmatic digital advertising; Analytics tools – viewability, on target reach, Ad fraud, Brand Health.

Unit-2
Teaching Hours:6
Search Engine Marketing
 

 

Why pay for Search Advertising? Understanding Ad Placement; Understanding Ad ranks; Creating the first Ad campaign; Enhancing the Ad campaigns; Performance reports. Google Adsense.

Concept of Display Advertising; Types of display Ads; Buying Models; Display Plan; Targeting – Contextual targeting- Placement Targeting-Remarketing- Interest categories- Geographic Language Tagging; What makes a good Ad? Programmatic digital advertising; Analytics tools – viewability, on target reach, Ad fraud, Brand Health.

Unit-2
Teaching Hours:6
Search Engine Marketing
 

 

Why pay for Search Advertising? Understanding Ad Placement; Understanding Ad ranks; Creating the first Ad campaign; Enhancing the Ad campaigns; Performance reports. Google Adsense.

Concept of Display Advertising; Types of display Ads; Buying Models; Display Plan; Targeting – Contextual targeting- Placement Targeting-Remarketing- Interest categories- Geographic Language Tagging; What makes a good Ad? Programmatic digital advertising; Analytics tools – viewability, on target reach, Ad fraud, Brand Health.

Unit-2
Teaching Hours:6
Search Engine Marketing
 

 

Why pay for Search Advertising? Understanding Ad Placement; Understanding Ad ranks; Creating the first Ad campaign; Enhancing the Ad campaigns; Performance reports. Google Adsense.

Concept of Display Advertising; Types of display Ads; Buying Models; Display Plan; Targeting – Contextual targeting- Placement Targeting-Remarketing- Interest categories- Geographic Language Tagging; What makes a good Ad? Programmatic digital advertising; Analytics tools – viewability, on target reach, Ad fraud, Brand Health.

Unit-2
Teaching Hours:6
Search Engine Marketing
 

 

Why pay for Search Advertising? Understanding Ad Placement; Understanding Ad ranks; Creating the first Ad campaign; Enhancing the Ad campaigns; Performance reports. Google Adsense.

Concept of Display Advertising; Types of display Ads; Buying Models; Display Plan; Targeting – Contextual targeting- Placement Targeting-Remarketing- Interest categories- Geographic Language Tagging; What makes a good Ad? Programmatic digital advertising; Analytics tools – viewability, on target reach, Ad fraud, Brand Health.

Unit-2
Teaching Hours:6
Search Engine Marketing
 

 

Why pay for Search Advertising? Understanding Ad Placement; Understanding Ad ranks; Creating the first Ad campaign; Enhancing the Ad campaigns; Performance reports. Google Adsense.

Concept of Display Advertising; Types of display Ads; Buying Models; Display Plan; Targeting – Contextual targeting- Placement Targeting-Remarketing- Interest categories- Geographic Language Tagging; What makes a good Ad? Programmatic digital advertising; Analytics tools – viewability, on target reach, Ad fraud, Brand Health.

Unit-2
Teaching Hours:6
Search Engine Marketing
 

 

Why pay for Search Advertising? Understanding Ad Placement; Understanding Ad ranks; Creating the first Ad campaign; Enhancing the Ad campaigns; Performance reports. Google Adsense.

Concept of Display Advertising; Types of display Ads; Buying Models; Display Plan; Targeting – Contextual targeting- Placement Targeting-Remarketing- Interest categories- Geographic Language Tagging; What makes a good Ad? Programmatic digital advertising; Analytics tools – viewability, on target reach, Ad fraud, Brand Health.

Unit-2
Teaching Hours:6
Search Engine Marketing
 

 

Why pay for Search Advertising? Understanding Ad Placement; Understanding Ad ranks; Creating the first Ad campaign; Enhancing the Ad campaigns; Performance reports. Google Adsense.

Concept of Display Advertising; Types of display Ads; Buying Models; Display Plan; Targeting – Contextual targeting- Placement Targeting-Remarketing- Interest categories- Geographic Language Tagging; What makes a good Ad? Programmatic digital advertising; Analytics tools – viewability, on target reach, Ad fraud, Brand Health.

Unit-2
Teaching Hours:6
Search Engine Marketing
 

 

Why pay for Search Advertising? Understanding Ad Placement; Understanding Ad ranks; Creating the first Ad campaign; Enhancing the Ad campaigns; Performance reports. Google Adsense.

Concept of Display Advertising; Types of display Ads; Buying Models; Display Plan; Targeting – Contextual targeting- Placement Targeting-Remarketing- Interest categories- Geographic Language Tagging; What makes a good Ad? Programmatic digital advertising; Analytics tools – viewability, on target reach, Ad fraud, Brand Health.

Unit-2
Teaching Hours:6
Search Engine Marketing
 

 

Why pay for Search Advertising? Understanding Ad Placement; Understanding Ad ranks; Creating the first Ad campaign; Enhancing the Ad campaigns; Performance reports. Google Adsense.

Concept of Display Advertising; Types of display Ads; Buying Models; Display Plan; Targeting – Contextual targeting- Placement Targeting-Remarketing- Interest categories- Geographic Language Tagging; What makes a good Ad? Programmatic digital advertising; Analytics tools – viewability, on target reach, Ad fraud, Brand Health.

Unit-3
Teaching Hours:9
Social Media Marketing
 

 

How to build a successful social media strategy? Facebook Marketing- Facebook for Business-Anatomy of an Ad campaign – Adverts - Facebook Insights

 

Linkedin Marketing – Linkedin Strategy- Sales lead generation – Content Strategy – Linkedin Analytics – Targeting – Ad Campaign

 

Twitter Marketing – Getting started with Twitter – Building a content strategy – Twitter Ads – Twitter Analytics

Instagram Marketing – Objectives – Content Strategy – Style guidelines – Hashtags – Videos- Sponsored Ads – Apps – Generate leads           

Unit-3
Teaching Hours:9
Social Media Marketing
 

 

How to build a successful social media strategy? Facebook Marketing- Facebook for Business-Anatomy of an Ad campaign – Adverts - Facebook Insights

 

Linkedin Marketing – Linkedin Strategy- Sales lead generation – Content Strategy – Linkedin Analytics – Targeting – Ad Campaign

 

Twitter Marketing – Getting started with Twitter – Building a content strategy – Twitter Ads – Twitter Analytics

Instagram Marketing – Objectives – Content Strategy – Style guidelines – Hashtags – Videos- Sponsored Ads – Apps – Generate leads           

Unit-3
Teaching Hours:9
Social Media Marketing
 

 

How to build a successful social media strategy? Facebook Marketing- Facebook for Business-Anatomy of an Ad campaign – Adverts - Facebook Insights

 

Linkedin Marketing – Linkedin Strategy- Sales lead generation – Content Strategy – Linkedin Analytics – Targeting – Ad Campaign

 

Twitter Marketing – Getting started with Twitter – Building a content strategy – Twitter Ads – Twitter Analytics

Instagram Marketing – Objectives – Content Strategy – Style guidelines – Hashtags – Videos- Sponsored Ads – Apps – Generate leads           

Unit-3
Teaching Hours:9
Social Media Marketing
 

 

How to build a successful social media strategy? Facebook Marketing- Facebook for Business-Anatomy of an Ad campaign – Adverts - Facebook Insights

 

Linkedin Marketing – Linkedin Strategy- Sales lead generation – Content Strategy – Linkedin Analytics – Targeting – Ad Campaign

 

Twitter Marketing – Getting started with Twitter – Building a content strategy – Twitter Ads – Twitter Analytics

Instagram Marketing – Objectives – Content Strategy – Style guidelines – Hashtags – Videos- Sponsored Ads – Apps – Generate leads           

Unit-3
Teaching Hours:9
Social Media Marketing
 

 

How to build a successful social media strategy? Facebook Marketing- Facebook for Business-Anatomy of an Ad campaign – Adverts - Facebook Insights

 

Linkedin Marketing – Linkedin Strategy- Sales lead generation – Content Strategy – Linkedin Analytics – Targeting – Ad Campaign

 

Twitter Marketing – Getting started with Twitter – Building a content strategy – Twitter Ads – Twitter Analytics

Instagram Marketing – Objectives – Content Strategy – Style guidelines – Hashtags – Videos- Sponsored Ads – Apps – Generate leads           

Unit-3
Teaching Hours:9
Social Media Marketing
 

 

How to build a successful social media strategy? Facebook Marketing- Facebook for Business-Anatomy of an Ad campaign – Adverts - Facebook Insights

 

Linkedin Marketing – Linkedin Strategy- Sales lead generation – Content Strategy – Linkedin Analytics – Targeting – Ad Campaign

 

Twitter Marketing – Getting started with Twitter – Building a content strategy – Twitter Ads – Twitter Analytics

Instagram Marketing – Objectives – Content Strategy – Style guidelines – Hashtags – Videos- Sponsored Ads – Apps – Generate leads           

Unit-3
Teaching Hours:9
Social Media Marketing
 

 

How to build a successful social media strategy? Facebook Marketing- Facebook for Business-Anatomy of an Ad campaign – Adverts - Facebook Insights

 

Linkedin Marketing – Linkedin Strategy- Sales lead generation – Content Strategy – Linkedin Analytics – Targeting – Ad Campaign

 

Twitter Marketing – Getting started with Twitter – Building a content strategy – Twitter Ads – Twitter Analytics

Instagram Marketing – Objectives – Content Strategy – Style guidelines – Hashtags – Videos- Sponsored Ads – Apps – Generate leads           

Unit-3
Teaching Hours:9
Social Media Marketing
 

 

How to build a successful social media strategy? Facebook Marketing- Facebook for Business-Anatomy of an Ad campaign – Adverts - Facebook Insights

 

Linkedin Marketing – Linkedin Strategy- Sales lead generation – Content Strategy – Linkedin Analytics – Targeting – Ad Campaign

 

Twitter Marketing – Getting started with Twitter – Building a content strategy – Twitter Ads – Twitter Analytics

Instagram Marketing – Objectives – Content Strategy – Style guidelines – Hashtags – Videos- Sponsored Ads – Apps – Generate leads           

Unit-3
Teaching Hours:9
Social Media Marketing
 

 

How to build a successful social media strategy? Facebook Marketing- Facebook for Business-Anatomy of an Ad campaign – Adverts - Facebook Insights

 

Linkedin Marketing – Linkedin Strategy- Sales lead generation – Content Strategy – Linkedin Analytics – Targeting – Ad Campaign

 

Twitter Marketing – Getting started with Twitter – Building a content strategy – Twitter Ads – Twitter Analytics

Instagram Marketing – Objectives – Content Strategy – Style guidelines – Hashtags – Videos- Sponsored Ads – Apps – Generate leads           

Unit-3
Teaching Hours:9
Social Media Marketing
 

 

How to build a successful social media strategy? Facebook Marketing- Facebook for Business-Anatomy of an Ad campaign – Adverts - Facebook Insights

 

Linkedin Marketing – Linkedin Strategy- Sales lead generation – Content Strategy – Linkedin Analytics – Targeting – Ad Campaign

 

Twitter Marketing – Getting started with Twitter – Building a content strategy – Twitter Ads – Twitter Analytics

Instagram Marketing – Objectives – Content Strategy – Style guidelines – Hashtags – Videos- Sponsored Ads – Apps – Generate leads           

Unit-3
Teaching Hours:9
Social Media Marketing
 

 

How to build a successful social media strategy? Facebook Marketing- Facebook for Business-Anatomy of an Ad campaign – Adverts - Facebook Insights

 

Linkedin Marketing – Linkedin Strategy- Sales lead generation – Content Strategy – Linkedin Analytics – Targeting – Ad Campaign

 

Twitter Marketing – Getting started with Twitter – Building a content strategy – Twitter Ads – Twitter Analytics

Instagram Marketing – Objectives – Content Strategy – Style guidelines – Hashtags – Videos- Sponsored Ads – Apps – Generate leads           

Unit-3
Teaching Hours:9
Social Media Marketing
 

 

How to build a successful social media strategy? Facebook Marketing- Facebook for Business-Anatomy of an Ad campaign – Adverts - Facebook Insights

 

Linkedin Marketing – Linkedin Strategy- Sales lead generation – Content Strategy – Linkedin Analytics – Targeting – Ad Campaign

 

Twitter Marketing – Getting started with Twitter – Building a content strategy – Twitter Ads – Twitter Analytics

Instagram Marketing – Objectives – Content Strategy – Style guidelines – Hashtags – Videos- Sponsored Ads – Apps – Generate leads           

Unit-3
Teaching Hours:9
Social Media Marketing
 

 

How to build a successful social media strategy? Facebook Marketing- Facebook for Business-Anatomy of an Ad campaign – Adverts - Facebook Insights

 

Linkedin Marketing – Linkedin Strategy- Sales lead generation – Content Strategy – Linkedin Analytics – Targeting – Ad Campaign

 

Twitter Marketing – Getting started with Twitter – Building a content strategy – Twitter Ads – Twitter Analytics

Instagram Marketing – Objectives – Content Strategy – Style guidelines – Hashtags – Videos- Sponsored Ads – Apps – Generate leads           

Unit-3
Teaching Hours:9
Social Media Marketing
 

 

How to build a successful social media strategy? Facebook Marketing- Facebook for Business-Anatomy of an Ad campaign – Adverts - Facebook Insights

 

Linkedin Marketing – Linkedin Strategy- Sales lead generation – Content Strategy – Linkedin Analytics – Targeting – Ad Campaign

 

Twitter Marketing – Getting started with Twitter – Building a content strategy – Twitter Ads – Twitter Analytics

Instagram Marketing – Objectives – Content Strategy – Style guidelines – Hashtags – Videos- Sponsored Ads – Apps – Generate leads           

Unit-4
Teaching Hours:6
e-mail Marketing and Search Engine Optimisation
 

 

e-mail Marketing – Building a List- Content Strategies – e-mail newsletter – Automating e-mail marketing- Analytics.

Search Engine Optimisation – How search engine works? SEO Phases; On page Optimisation; Off-page Optimisation; Social Media Reach; Maintenance

Unit-4
Teaching Hours:6
e-mail Marketing and Search Engine Optimisation
 

 

e-mail Marketing – Building a List- Content Strategies – e-mail newsletter – Automating e-mail marketing- Analytics.

Search Engine Optimisation – How search engine works? SEO Phases; On page Optimisation; Off-page Optimisation; Social Media Reach; Maintenance

Unit-4
Teaching Hours:6
e-mail Marketing and Search Engine Optimisation
 

 

e-mail Marketing – Building a List- Content Strategies – e-mail newsletter – Automating e-mail marketing- Analytics.

Search Engine Optimisation – How search engine works? SEO Phases; On page Optimisation; Off-page Optimisation; Social Media Reach; Maintenance

Unit-4
Teaching Hours:6
e-mail Marketing and Search Engine Optimisation
 

 

e-mail Marketing – Building a List- Content Strategies – e-mail newsletter – Automating e-mail marketing- Analytics.

Search Engine Optimisation – How search engine works? SEO Phases; On page Optimisation; Off-page Optimisation; Social Media Reach; Maintenance

Unit-4
Teaching Hours:6
e-mail Marketing and Search Engine Optimisation
 

 

e-mail Marketing – Building a List- Content Strategies – e-mail newsletter – Automating e-mail marketing- Analytics.

Search Engine Optimisation – How search engine works? SEO Phases; On page Optimisation; Off-page Optimisation; Social Media Reach; Maintenance

Unit-4
Teaching Hours:6
e-mail Marketing and Search Engine Optimisation
 

 

e-mail Marketing – Building a List- Content Strategies – e-mail newsletter – Automating e-mail marketing- Analytics.

Search Engine Optimisation – How search engine works? SEO Phases; On page Optimisation; Off-page Optimisation; Social Media Reach; Maintenance

Unit-4
Teaching Hours:6
e-mail Marketing and Search Engine Optimisation
 

 

e-mail Marketing – Building a List- Content Strategies – e-mail newsletter – Automating e-mail marketing- Analytics.

Search Engine Optimisation – How search engine works? SEO Phases; On page Optimisation; Off-page Optimisation; Social Media Reach; Maintenance

Unit-4
Teaching Hours:6
e-mail Marketing and Search Engine Optimisation
 

 

e-mail Marketing – Building a List- Content Strategies – e-mail newsletter – Automating e-mail marketing- Analytics.

Search Engine Optimisation – How search engine works? SEO Phases; On page Optimisation; Off-page Optimisation; Social Media Reach; Maintenance

Unit-4
Teaching Hours:6
e-mail Marketing and Search Engine Optimisation
 

 

e-mail Marketing – Building a List- Content Strategies – e-mail newsletter – Automating e-mail marketing- Analytics.

Search Engine Optimisation – How search engine works? SEO Phases; On page Optimisation; Off-page Optimisation; Social Media Reach; Maintenance

Unit-4
Teaching Hours:6
e-mail Marketing and Search Engine Optimisation
 

 

e-mail Marketing – Building a List- Content Strategies – e-mail newsletter – Automating e-mail marketing- Analytics.

Search Engine Optimisation – How search engine works? SEO Phases; On page Optimisation; Off-page Optimisation; Social Media Reach; Maintenance

Unit-4
Teaching Hours:6
e-mail Marketing and Search Engine Optimisation
 

 

e-mail Marketing – Building a List- Content Strategies – e-mail newsletter – Automating e-mail marketing- Analytics.

Search Engine Optimisation – How search engine works? SEO Phases; On page Optimisation; Off-page Optimisation; Social Media Reach; Maintenance

Unit-4
Teaching Hours:6
e-mail Marketing and Search Engine Optimisation
 

 

e-mail Marketing – Building a List- Content Strategies – e-mail newsletter – Automating e-mail marketing- Analytics.

Search Engine Optimisation – How search engine works? SEO Phases; On page Optimisation; Off-page Optimisation; Social Media Reach; Maintenance

Unit-4
Teaching Hours:6
e-mail Marketing and Search Engine Optimisation
 

 

e-mail Marketing – Building a List- Content Strategies – e-mail newsletter – Automating e-mail marketing- Analytics.

Search Engine Optimisation – How search engine works? SEO Phases; On page Optimisation; Off-page Optimisation; Social Media Reach; Maintenance

Unit-4
Teaching Hours:6
e-mail Marketing and Search Engine Optimisation
 

 

e-mail Marketing – Building a List- Content Strategies – e-mail newsletter – Automating e-mail marketing- Analytics.

Search Engine Optimisation – How search engine works? SEO Phases; On page Optimisation; Off-page Optimisation; Social Media Reach; Maintenance

Unit-5
Teaching Hours:4
Mobile Marketing and Web Analytics
 

 

Mobile Advertising – Mobile Marketing toolkit – Mobile Marketing Features – Mobile Analytics

Web Analytics – Key Metrics – Making web analytics actionable – Types of tracking codes

Unit-5
Teaching Hours:4
Mobile Marketing and Web Analytics
 

 

Mobile Advertising – Mobile Marketing toolkit – Mobile Marketing Features – Mobile Analytics

Web Analytics – Key Metrics – Making web analytics actionable – Types of tracking codes

Unit-5
Teaching Hours:4
Mobile Marketing and Web Analytics
 

 

Mobile Advertising – Mobile Marketing toolkit – Mobile Marketing Features – Mobile Analytics

Web Analytics – Key Metrics – Making web analytics actionable – Types of tracking codes

Unit-5
Teaching Hours:4
Mobile Marketing and Web Analytics
 

 

Mobile Advertising – Mobile Marketing toolkit – Mobile Marketing Features – Mobile Analytics

Web Analytics – Key Metrics – Making web analytics actionable – Types of tracking codes

Unit-5
Teaching Hours:4
Mobile Marketing and Web Analytics
 

 

Mobile Advertising – Mobile Marketing toolkit – Mobile Marketing Features – Mobile Analytics

Web Analytics – Key Metrics – Making web analytics actionable – Types of tracking codes

Unit-5
Teaching Hours:4
Mobile Marketing and Web Analytics
 

 

Mobile Advertising – Mobile Marketing toolkit – Mobile Marketing Features – Mobile Analytics

Web Analytics – Key Metrics – Making web analytics actionable – Types of tracking codes

Unit-5
Teaching Hours:4
Mobile Marketing and Web Analytics
 

 

Mobile Advertising – Mobile Marketing toolkit – Mobile Marketing Features – Mobile Analytics

Web Analytics – Key Metrics – Making web analytics actionable – Types of tracking codes

Unit-5
Teaching Hours:4
Mobile Marketing and Web Analytics
 

 

Mobile Advertising – Mobile Marketing toolkit – Mobile Marketing Features – Mobile Analytics

Web Analytics – Key Metrics – Making web analytics actionable – Types of tracking codes

Unit-5
Teaching Hours:4
Mobile Marketing and Web Analytics
 

 

Mobile Advertising – Mobile Marketing toolkit – Mobile Marketing Features – Mobile Analytics

Web Analytics – Key Metrics – Making web analytics actionable – Types of tracking codes

Unit-5
Teaching Hours:4
Mobile Marketing and Web Analytics
 

 

Mobile Advertising – Mobile Marketing toolkit – Mobile Marketing Features – Mobile Analytics

Web Analytics – Key Metrics – Making web analytics actionable – Types of tracking codes

Unit-5
Teaching Hours:4
Mobile Marketing and Web Analytics
 

 

Mobile Advertising – Mobile Marketing toolkit – Mobile Marketing Features – Mobile Analytics

Web Analytics – Key Metrics – Making web analytics actionable – Types of tracking codes

Unit-5
Teaching Hours:4
Mobile Marketing and Web Analytics
 

 

Mobile Advertising – Mobile Marketing toolkit – Mobile Marketing Features – Mobile Analytics

Web Analytics – Key Metrics – Making web analytics actionable – Types of tracking codes

Unit-5
Teaching Hours:4
Mobile Marketing and Web Analytics
 

 

Mobile Advertising – Mobile Marketing toolkit – Mobile Marketing Features – Mobile Analytics

Web Analytics – Key Metrics – Making web analytics actionable – Types of tracking codes

Unit-5
Teaching Hours:4
Mobile Marketing and Web Analytics
 

 

Mobile Advertising – Mobile Marketing toolkit – Mobile Marketing Features – Mobile Analytics

Web Analytics – Key Metrics – Making web analytics actionable – Types of tracking codes

Text Books And Reference Books:

1. Seema Gupta. (2020). Digital Marketing (2nd  Ed). Tata Mc Graw Hill

Essential Reading / Recommended Reading

 

1.      Kerpen, D., Berk, R., Greenbaum, M. (2019). Likeable social media, Third Edition: How To Delight Your Customers, Create an Irresistible Brand, & Be Generally Amazing On All Social Networks That Matter. United Kingdom: McGraw-Hill Education.

 

2.      Dr. Antony Puthussery (2020). Digital Marketing: An Overview. Notion Press.

 

3.      Herman, J., Butow, E., Allton, M., Liu, S., Robinson, A. (2020). Ultimate Guide to Social Media Marketing. United States: Entrepreneur Press.

 

4.      Marshall, P., Rhodes, M., Todd, B. (2020). Ultimate Guide to Google Ads. United States: Entrepreneur Press.

 

Evaluation Pattern

 

CIA 1 – Digital Marketing Plan – 20 Marks

 

CIA 2 – Google Ads – 10 Marks

 

CIA 3 – Social Media Marketing – 25 Marks

 

CIA 4 – Web Analysis (SEO) – 20 Marks

 

CIA 5 – Analytics – 20 Marks

 

Attendance – 5 Marks

 

CIA – Total Marks – 100 Converted to 50

 

ETE

 

Viva Voce – 50 Marks

 

Report – 50 Marks

 

ETE – 100 Marks – Converted to 50

Overall Marks – CIA + ESE = 100

 

BTGE653 - DIGITAL WRITING (2022 Batch)

Total Teaching Hours for Semester:30
No of Lecture Hours/Week:2
Max Marks:100
Credits:2

Course Objectives/Course Description

 

The course will develop the knowledge and skills required to write content for digital media. Students will learn how to craft writing for different areas of the media by focusing on genres such as profiles, informative pieces, articles and content pieces. Students will work on pitching and marketing ideas, discuss topics such as timelines, word counts and deadlines. The course will also examine the principles of reporting and the legal and ethical issues associated with content writing

 

The course intends to provide students with an in-depth understanding of the nature of digital content. The course will acquaint students with the techniques of writing simple but polished digital content. The subject will develop creativity in writing and imaginative approaches to digital content writing. The paper will help students understand the mechanics of content writing

Learning Outcome

CO1: Students will learn how to write digital content for websites, blogs, and general social networking sites

CO2: Students will learn the importance of using hyperlinks to information sources when writing an article

CO3: Students will be able to differentiate between original and plagiarized content and develop mechanisms to avoid plagiarism

Unit-1
Teaching Hours:6
Introduction to Digital Writing
 

What is online writing, Narrative structure for online and digital stories, writing for university publications, Copyright, Ownership, and authorship, Approach to digital storytelling, Interactive narratives, sourcing information, exploring transmedia stories, data visualization, online identities and the self, alternate realities

Unit-1
Teaching Hours:6
Introduction to Digital Writing
 

What is online writing, Narrative structure for online and digital stories, writing for university publications, Copyright, Ownership, and authorship, Approach to digital storytelling, Interactive narratives, sourcing information, exploring transmedia stories, data visualization, online identities and the self, alternate realities

Unit-1
Teaching Hours:6
Introduction to Digital Writing
 

What is online writing, Narrative structure for online and digital stories, writing for university publications, Copyright, Ownership, and authorship, Approach to digital storytelling, Interactive narratives, sourcing information, exploring transmedia stories, data visualization, online identities and the self, alternate realities

Unit-1
Teaching Hours:6
Introduction to Digital Writing
 

What is online writing, Narrative structure for online and digital stories, writing for university publications, Copyright, Ownership, and authorship, Approach to digital storytelling, Interactive narratives, sourcing information, exploring transmedia stories, data visualization, online identities and the self, alternate realities

Unit-1
Teaching Hours:6
Introduction to Digital Writing
 

What is online writing, Narrative structure for online and digital stories, writing for university publications, Copyright, Ownership, and authorship, Approach to digital storytelling, Interactive narratives, sourcing information, exploring transmedia stories, data visualization, online identities and the self, alternate realities

Unit-1
Teaching Hours:6
Introduction to Digital Writing
 

What is online writing, Narrative structure for online and digital stories, writing for university publications, Copyright, Ownership, and authorship, Approach to digital storytelling, Interactive narratives, sourcing information, exploring transmedia stories, data visualization, online identities and the self, alternate realities

Unit-1
Teaching Hours:6
Introduction to Digital Writing
 

What is online writing, Narrative structure for online and digital stories, writing for university publications, Copyright, Ownership, and authorship, Approach to digital storytelling, Interactive narratives, sourcing information, exploring transmedia stories, data visualization, online identities and the self, alternate realities

Unit-1
Teaching Hours:6
Introduction to Digital Writing
 

What is online writing, Narrative structure for online and digital stories, writing for university publications, Copyright, Ownership, and authorship, Approach to digital storytelling, Interactive narratives, sourcing information, exploring transmedia stories, data visualization, online identities and the self, alternate realities

Unit-1
Teaching Hours:6
Introduction to Digital Writing
 

What is online writing, Narrative structure for online and digital stories, writing for university publications, Copyright, Ownership, and authorship, Approach to digital storytelling, Interactive narratives, sourcing information, exploring transmedia stories, data visualization, online identities and the self, alternate realities

Unit-1
Teaching Hours:6
Introduction to Digital Writing
 

What is online writing, Narrative structure for online and digital stories, writing for university publications, Copyright, Ownership, and authorship, Approach to digital storytelling, Interactive narratives, sourcing information, exploring transmedia stories, data visualization, online identities and the self, alternate realities

Unit-1
Teaching Hours:6
Introduction to Digital Writing
 

What is online writing, Narrative structure for online and digital stories, writing for university publications, Copyright, Ownership, and authorship, Approach to digital storytelling, Interactive narratives, sourcing information, exploring transmedia stories, data visualization, online identities and the self, alternate realities

Unit-1
Teaching Hours:6
Introduction to Digital Writing
 

What is online writing, Narrative structure for online and digital stories, writing for university publications, Copyright, Ownership, and authorship, Approach to digital storytelling, Interactive narratives, sourcing information, exploring transmedia stories, data visualization, online identities and the self, alternate realities

Unit-1
Teaching Hours:6
Introduction to Digital Writing
 

What is online writing, Narrative structure for online and digital stories, writing for university publications, Copyright, Ownership, and authorship, Approach to digital storytelling, Interactive narratives, sourcing information, exploring transmedia stories, data visualization, online identities and the self, alternate realities

Unit-1
Teaching Hours:6
Introduction to Digital Writing
 

What is online writing, Narrative structure for online and digital stories, writing for university publications, Copyright, Ownership, and authorship, Approach to digital storytelling, Interactive narratives, sourcing information, exploring transmedia stories, data visualization, online identities and the self, alternate realities

Unit-2
Teaching Hours:6
Writing Techniques
 

Online news writing, headlines, sentences, links, tables and infographics, meaningful linking, effective illustrations, content strategy, message, media, style and tone, purposes, personas and scenarios

Unit-2
Teaching Hours:6
Writing Techniques
 

Online news writing, headlines, sentences, links, tables and infographics, meaningful linking, effective illustrations, content strategy, message, media, style and tone, purposes, personas and scenarios

Unit-2
Teaching Hours:6
Writing Techniques
 

Online news writing, headlines, sentences, links, tables and infographics, meaningful linking, effective illustrations, content strategy, message, media, style and tone, purposes, personas and scenarios

Unit-2
Teaching Hours:6
Writing Techniques
 

Online news writing, headlines, sentences, links, tables and infographics, meaningful linking, effective illustrations, content strategy, message, media, style and tone, purposes, personas and scenarios

Unit-2
Teaching Hours:6
Writing Techniques
 

Online news writing, headlines, sentences, links, tables and infographics, meaningful linking, effective illustrations, content strategy, message, media, style and tone, purposes, personas and scenarios

Unit-2
Teaching Hours:6
Writing Techniques
 

Online news writing, headlines, sentences, links, tables and infographics, meaningful linking, effective illustrations, content strategy, message, media, style and tone, purposes, personas and scenarios

Unit-2
Teaching Hours:6
Writing Techniques
 

Online news writing, headlines, sentences, links, tables and infographics, meaningful linking, effective illustrations, content strategy, message, media, style and tone, purposes, personas and scenarios

Unit-2
Teaching Hours:6
Writing Techniques
 

Online news writing, headlines, sentences, links, tables and infographics, meaningful linking, effective illustrations, content strategy, message, media, style and tone, purposes, personas and scenarios

Unit-2
Teaching Hours:6
Writing Techniques
 

Online news writing, headlines, sentences, links, tables and infographics, meaningful linking, effective illustrations, content strategy, message, media, style and tone, purposes, personas and scenarios

Unit-2
Teaching Hours:6
Writing Techniques
 

Online news writing, headlines, sentences, links, tables and infographics, meaningful linking, effective illustrations, content strategy, message, media, style and tone, purposes, personas and scenarios

Unit-2
Teaching Hours:6
Writing Techniques
 

Online news writing, headlines, sentences, links, tables and infographics, meaningful linking, effective illustrations, content strategy, message, media, style and tone, purposes, personas and scenarios

Unit-2
Teaching Hours:6
Writing Techniques
 

Online news writing, headlines, sentences, links, tables and infographics, meaningful linking, effective illustrations, content strategy, message, media, style and tone, purposes, personas and scenarios

Unit-2
Teaching Hours:6
Writing Techniques
 

Online news writing, headlines, sentences, links, tables and infographics, meaningful linking, effective illustrations, content strategy, message, media, style and tone, purposes, personas and scenarios

Unit-2
Teaching Hours:6
Writing Techniques
 

Online news writing, headlines, sentences, links, tables and infographics, meaningful linking, effective illustrations, content strategy, message, media, style and tone, purposes, personas and scenarios

Unit-3
Teaching Hours:6
Writing for Newspapers
 

Journalistic writing-nature, process and styles, Concept of news-definitions, news values, nose for news, News writing- elements of news stories-Lead, body & closure; 5 Ws & 1 H, News writing structures- pyramid, inverted pyramid, hourglass, chronological, Newspaper design, Anatomy of a newspaper, Typography-font type, anatomy of type, type families, Readability & aesthetic principles, Page layout & design

Unit-3
Teaching Hours:6
Writing for Newspapers
 

Journalistic writing-nature, process and styles, Concept of news-definitions, news values, nose for news, News writing- elements of news stories-Lead, body & closure; 5 Ws & 1 H, News writing structures- pyramid, inverted pyramid, hourglass, chronological, Newspaper design, Anatomy of a newspaper, Typography-font type, anatomy of type, type families, Readability & aesthetic principles, Page layout & design

Unit-3
Teaching Hours:6
Writing for Newspapers
 

Journalistic writing-nature, process and styles, Concept of news-definitions, news values, nose for news, News writing- elements of news stories-Lead, body & closure; 5 Ws & 1 H, News writing structures- pyramid, inverted pyramid, hourglass, chronological, Newspaper design, Anatomy of a newspaper, Typography-font type, anatomy of type, type families, Readability & aesthetic principles, Page layout & design

Unit-3
Teaching Hours:6
Writing for Newspapers
 

Journalistic writing-nature, process and styles, Concept of news-definitions, news values, nose for news, News writing- elements of news stories-Lead, body & closure; 5 Ws & 1 H, News writing structures- pyramid, inverted pyramid, hourglass, chronological, Newspaper design, Anatomy of a newspaper, Typography-font type, anatomy of type, type families, Readability & aesthetic principles, Page layout & design

Unit-3
Teaching Hours:6
Writing for Newspapers
 

Journalistic writing-nature, process and styles, Concept of news-definitions, news values, nose for news, News writing- elements of news stories-Lead, body & closure; 5 Ws & 1 H, News writing structures- pyramid, inverted pyramid, hourglass, chronological, Newspaper design, Anatomy of a newspaper, Typography-font type, anatomy of type, type families, Readability & aesthetic principles, Page layout & design

Unit-3
Teaching Hours:6
Writing for Newspapers
 

Journalistic writing-nature, process and styles, Concept of news-definitions, news values, nose for news, News writing- elements of news stories-Lead, body & closure; 5 Ws & 1 H, News writing structures- pyramid, inverted pyramid, hourglass, chronological, Newspaper design, Anatomy of a newspaper, Typography-font type, anatomy of type, type families, Readability & aesthetic principles, Page layout & design

Unit-3
Teaching Hours:6
Writing for Newspapers
 

Journalistic writing-nature, process and styles, Concept of news-definitions, news values, nose for news, News writing- elements of news stories-Lead, body & closure; 5 Ws & 1 H, News writing structures- pyramid, inverted pyramid, hourglass, chronological, Newspaper design, Anatomy of a newspaper, Typography-font type, anatomy of type, type families, Readability & aesthetic principles, Page layout & design

Unit-3
Teaching Hours:6
Writing for Newspapers
 

Journalistic writing-nature, process and styles, Concept of news-definitions, news values, nose for news, News writing- elements of news stories-Lead, body & closure; 5 Ws & 1 H, News writing structures- pyramid, inverted pyramid, hourglass, chronological, Newspaper design, Anatomy of a newspaper, Typography-font type, anatomy of type, type families, Readability & aesthetic principles, Page layout & design

Unit-3
Teaching Hours:6
Writing for Newspapers
 

Journalistic writing-nature, process and styles, Concept of news-definitions, news values, nose for news, News writing- elements of news stories-Lead, body & closure; 5 Ws & 1 H, News writing structures- pyramid, inverted pyramid, hourglass, chronological, Newspaper design, Anatomy of a newspaper, Typography-font type, anatomy of type, type families, Readability & aesthetic principles, Page layout & design

Unit-3
Teaching Hours:6
Writing for Newspapers
 

Journalistic writing-nature, process and styles, Concept of news-definitions, news values, nose for news, News writing- elements of news stories-Lead, body & closure; 5 Ws & 1 H, News writing structures- pyramid, inverted pyramid, hourglass, chronological, Newspaper design, Anatomy of a newspaper, Typography-font type, anatomy of type, type families, Readability & aesthetic principles, Page layout & design

Unit-3
Teaching Hours:6
Writing for Newspapers
 

Journalistic writing-nature, process and styles, Concept of news-definitions, news values, nose for news, News writing- elements of news stories-Lead, body & closure; 5 Ws & 1 H, News writing structures- pyramid, inverted pyramid, hourglass, chronological, Newspaper design, Anatomy of a newspaper, Typography-font type, anatomy of type, type families, Readability & aesthetic principles, Page layout & design

Unit-3
Teaching Hours:6
Writing for Newspapers
 

Journalistic writing-nature, process and styles, Concept of news-definitions, news values, nose for news, News writing- elements of news stories-Lead, body & closure; 5 Ws & 1 H, News writing structures- pyramid, inverted pyramid, hourglass, chronological, Newspaper design, Anatomy of a newspaper, Typography-font type, anatomy of type, type families, Readability & aesthetic principles, Page layout & design

Unit-3
Teaching Hours:6
Writing for Newspapers
 

Journalistic writing-nature, process and styles, Concept of news-definitions, news values, nose for news, News writing- elements of news stories-Lead, body & closure; 5 Ws & 1 H, News writing structures- pyramid, inverted pyramid, hourglass, chronological, Newspaper design, Anatomy of a newspaper, Typography-font type, anatomy of type, type families, Readability & aesthetic principles, Page layout & design

Unit-3
Teaching Hours:6
Writing for Newspapers
 

Journalistic writing-nature, process and styles, Concept of news-definitions, news values, nose for news, News writing- elements of news stories-Lead, body & closure; 5 Ws & 1 H, News writing structures- pyramid, inverted pyramid, hourglass, chronological, Newspaper design, Anatomy of a newspaper, Typography-font type, anatomy of type, type families, Readability & aesthetic principles, Page layout & design

Unit-4
Teaching Hours:6
Writing a Book Proposal
 

Process of book publishing, understanding book proposal, the importance of book proposal, book proposal structure, steps for writing a book proposal, some common mistakes made when writing a book proposal.

Unit-4
Teaching Hours:6
Writing a Book Proposal
 

Process of book publishing, understanding book proposal, the importance of book proposal, book proposal structure, steps for writing a book proposal, some common mistakes made when writing a book proposal.

Unit-4
Teaching Hours:6
Writing a Book Proposal
 

Process of book publishing, understanding book proposal, the importance of book proposal, book proposal structure, steps for writing a book proposal, some common mistakes made when writing a book proposal.

Unit-4
Teaching Hours:6
Writing a Book Proposal
 

Process of book publishing, understanding book proposal, the importance of book proposal, book proposal structure, steps for writing a book proposal, some common mistakes made when writing a book proposal.

Unit-4
Teaching Hours:6
Writing a Book Proposal
 

Process of book publishing, understanding book proposal, the importance of book proposal, book proposal structure, steps for writing a book proposal, some common mistakes made when writing a book proposal.

Unit-4
Teaching Hours:6
Writing a Book Proposal
 

Process of book publishing, understanding book proposal, the importance of book proposal, book proposal structure, steps for writing a book proposal, some common mistakes made when writing a book proposal.

Unit-4
Teaching Hours:6
Writing a Book Proposal
 

Process of book publishing, understanding book proposal, the importance of book proposal, book proposal structure, steps for writing a book proposal, some common mistakes made when writing a book proposal.

Unit-4
Teaching Hours:6
Writing a Book Proposal
 

Process of book publishing, understanding book proposal, the importance of book proposal, book proposal structure, steps for writing a book proposal, some common mistakes made when writing a book proposal.

Unit-4
Teaching Hours:6
Writing a Book Proposal
 

Process of book publishing, understanding book proposal, the importance of book proposal, book proposal structure, steps for writing a book proposal, some common mistakes made when writing a book proposal.

Unit-4
Teaching Hours:6
Writing a Book Proposal
 

Process of book publishing, understanding book proposal, the importance of book proposal, book proposal structure, steps for writing a book proposal, some common mistakes made when writing a book proposal.

Unit-4
Teaching Hours:6
Writing a Book Proposal
 

Process of book publishing, understanding book proposal, the importance of book proposal, book proposal structure, steps for writing a book proposal, some common mistakes made when writing a book proposal.

Unit-4
Teaching Hours:6
Writing a Book Proposal
 

Process of book publishing, understanding book proposal, the importance of book proposal, book proposal structure, steps for writing a book proposal, some common mistakes made when writing a book proposal.

Unit-4
Teaching Hours:6
Writing a Book Proposal
 

Process of book publishing, understanding book proposal, the importance of book proposal, book proposal structure, steps for writing a book proposal, some common mistakes made when writing a book proposal.

Unit-4
Teaching Hours:6
Writing a Book Proposal
 

Process of book publishing, understanding book proposal, the importance of book proposal, book proposal structure, steps for writing a book proposal, some common mistakes made when writing a book proposal.

Unit-5
Teaching Hours:6
Writing Resume and Cover
 

Introduction to resume, the 3Fs of resume writing, parts of a resume, difference between CV and resume, characteristics of a good resume, anatomy of a resume, common mistakes made while writing a resume, introduction to cover letter, writing a cover letter for a job application, writing a cover letter for a book proposal, common mistakes made while writing a cover letter

Unit-5
Teaching Hours:6
Writing Resume and Cover
 

Introduction to resume, the 3Fs of resume writing, parts of a resume, difference between CV and resume, characteristics of a good resume, anatomy of a resume, common mistakes made while writing a resume, introduction to cover letter, writing a cover letter for a job application, writing a cover letter for a book proposal, common mistakes made while writing a cover letter

Unit-5
Teaching Hours:6
Writing Resume and Cover
 

Introduction to resume, the 3Fs of resume writing, parts of a resume, difference between CV and resume, characteristics of a good resume, anatomy of a resume, common mistakes made while writing a resume, introduction to cover letter, writing a cover letter for a job application, writing a cover letter for a book proposal, common mistakes made while writing a cover letter

Unit-5
Teaching Hours:6
Writing Resume and Cover
 

Introduction to resume, the 3Fs of resume writing, parts of a resume, difference between CV and resume, characteristics of a good resume, anatomy of a resume, common mistakes made while writing a resume, introduction to cover letter, writing a cover letter for a job application, writing a cover letter for a book proposal, common mistakes made while writing a cover letter

Unit-5
Teaching Hours:6
Writing Resume and Cover
 

Introduction to resume, the 3Fs of resume writing, parts of a resume, difference between CV and resume, characteristics of a good resume, anatomy of a resume, common mistakes made while writing a resume, introduction to cover letter, writing a cover letter for a job application, writing a cover letter for a book proposal, common mistakes made while writing a cover letter

Unit-5
Teaching Hours:6
Writing Resume and Cover
 

Introduction to resume, the 3Fs of resume writing, parts of a resume, difference between CV and resume, characteristics of a good resume, anatomy of a resume, common mistakes made while writing a resume, introduction to cover letter, writing a cover letter for a job application, writing a cover letter for a book proposal, common mistakes made while writing a cover letter

Unit-5
Teaching Hours:6
Writing Resume and Cover
 

Introduction to resume, the 3Fs of resume writing, parts of a resume, difference between CV and resume, characteristics of a good resume, anatomy of a resume, common mistakes made while writing a resume, introduction to cover letter, writing a cover letter for a job application, writing a cover letter for a book proposal, common mistakes made while writing a cover letter

Unit-5
Teaching Hours:6
Writing Resume and Cover
 

Introduction to resume, the 3Fs of resume writing, parts of a resume, difference between CV and resume, characteristics of a good resume, anatomy of a resume, common mistakes made while writing a resume, introduction to cover letter, writing a cover letter for a job application, writing a cover letter for a book proposal, common mistakes made while writing a cover letter

Unit-5
Teaching Hours:6
Writing Resume and Cover
 

Introduction to resume, the 3Fs of resume writing, parts of a resume, difference between CV and resume, characteristics of a good resume, anatomy of a resume, common mistakes made while writing a resume, introduction to cover letter, writing a cover letter for a job application, writing a cover letter for a book proposal, common mistakes made while writing a cover letter

Unit-5
Teaching Hours:6
Writing Resume and Cover
 

Introduction to resume, the 3Fs of resume writing, parts of a resume, difference between CV and resume, characteristics of a good resume, anatomy of a resume, common mistakes made while writing a resume, introduction to cover letter, writing a cover letter for a job application, writing a cover letter for a book proposal, common mistakes made while writing a cover letter

Unit-5
Teaching Hours:6
Writing Resume and Cover
 

Introduction to resume, the 3Fs of resume writing, parts of a resume, difference between CV and resume, characteristics of a good resume, anatomy of a resume, common mistakes made while writing a resume, introduction to cover letter, writing a cover letter for a job application, writing a cover letter for a book proposal, common mistakes made while writing a cover letter

Unit-5
Teaching Hours:6
Writing Resume and Cover
 

Introduction to resume, the 3Fs of resume writing, parts of a resume, difference between CV and resume, characteristics of a good resume, anatomy of a resume, common mistakes made while writing a resume, introduction to cover letter, writing a cover letter for a job application, writing a cover letter for a book proposal, common mistakes made while writing a cover letter

Unit-5
Teaching Hours:6
Writing Resume and Cover
 

Introduction to resume, the 3Fs of resume writing, parts of a resume, difference between CV and resume, characteristics of a good resume, anatomy of a resume, common mistakes made while writing a resume, introduction to cover letter, writing a cover letter for a job application, writing a cover letter for a book proposal, common mistakes made while writing a cover letter

Unit-5
Teaching Hours:6
Writing Resume and Cover
 

Introduction to resume, the 3Fs of resume writing, parts of a resume, difference between CV and resume, characteristics of a good resume, anatomy of a resume, common mistakes made while writing a resume, introduction to cover letter, writing a cover letter for a job application, writing a cover letter for a book proposal, common mistakes made while writing a cover letter

Text Books And Reference Books:
  1. Peter Clark, Roy. How to Write Short: Word Craft for Fast Times. Little Brown and Company. ISBN 0316204323.

 

  1. Carroll, Brian. Writing and Editing for Digital Media, 1st edition. ISBN 978-0-415-99201-5. Routledge.

 

  1. Writing New Media Theory and Applications for Expanding the Teaching of Composition; Anne Frances Wysocki, Johndan Johnson-Eilola, Cynthia L. Selfe, & Geoffrey Sirc Publication Year: 2004.
Essential Reading / Recommended Reading
  1. Online Journalism: Reporting, Writing and Editing for New Media, Richard Craig.

 

  1. Broadcast News Handbook: Writing, Reporting & Producing in a Converging Media World 2007, Third Edition, C.A. Tuggle,  Forrest Carr and Suzanne Huffman
Evaluation Pattern

Introduction - 10

Content - 10

Structure - 10

Clarity- 10

Conclusion -10

BTGE654 - PHOTOGRAPHY (2022 Batch)

Total Teaching Hours for Semester:30
No of Lecture Hours/Week:2
Max Marks:50
Credits:2

Course Objectives/Course Description

 

1.      To provide proficiency in handling tools related to the photographic Images

2.      To explore the role of the photographer in the architectural community.

3.      To provide skills and knowledge in the application of various types of lights on the photography.

 

4.      To develop solutions for visual art related problems and to understand the concept of visual-based communication.

Learning Outcome

CO1: Ability to develop photography skill to express the art of communication

CO2: Improvising professional skills in the realm of documentation and photography art direction

Unit-1
Teaching Hours:10
Introduction of Photography
 

Exposure to a variety of Analog and digital photographic techniques.

Basics of shots, sizes, and angles.

Technical aspects such as exposure triangle, composition, framing, and introduction to lighting.

 

Printing The enlarger, set up, timer use, enlarging lenses, the test strip, developing procedures, contrast control with variable contrast filters, spotting and matting, archival processing. 

Unit-1
Teaching Hours:10
Introduction of Photography
 

Exposure to a variety of Analog and digital photographic techniques.

Basics of shots, sizes, and angles.

Technical aspects such as exposure triangle, composition, framing, and introduction to lighting.

 

Printing The enlarger, set up, timer use, enlarging lenses, the test strip, developing procedures, contrast control with variable contrast filters, spotting and matting, archival processing. 

Unit-1
Teaching Hours:10
Introduction of Photography
 

Exposure to a variety of Analog and digital photographic techniques.

Basics of shots, sizes, and angles.

Technical aspects such as exposure triangle, composition, framing, and introduction to lighting.

 

Printing The enlarger, set up, timer use, enlarging lenses, the test strip, developing procedures, contrast control with variable contrast filters, spotting and matting, archival processing. 

Unit-1
Teaching Hours:10
Introduction of Photography
 

Exposure to a variety of Analog and digital photographic techniques.

Basics of shots, sizes, and angles.

Technical aspects such as exposure triangle, composition, framing, and introduction to lighting.

 

Printing The enlarger, set up, timer use, enlarging lenses, the test strip, developing procedures, contrast control with variable contrast filters, spotting and matting, archival processing. 

Unit-1
Teaching Hours:10
Introduction of Photography
 

Exposure to a variety of Analog and digital photographic techniques.

Basics of shots, sizes, and angles.

Technical aspects such as exposure triangle, composition, framing, and introduction to lighting.

 

Printing The enlarger, set up, timer use, enlarging lenses, the test strip, developing procedures, contrast control with variable contrast filters, spotting and matting, archival processing. 

Unit-1
Teaching Hours:10
Introduction of Photography
 

Exposure to a variety of Analog and digital photographic techniques.

Basics of shots, sizes, and angles.

Technical aspects such as exposure triangle, composition, framing, and introduction to lighting.

 

Printing The enlarger, set up, timer use, enlarging lenses, the test strip, developing procedures, contrast control with variable contrast filters, spotting and matting, archival processing. 

Unit-1
Teaching Hours:10
Introduction of Photography
 

Exposure to a variety of Analog and digital photographic techniques.

Basics of shots, sizes, and angles.

Technical aspects such as exposure triangle, composition, framing, and introduction to lighting.

 

Printing The enlarger, set up, timer use, enlarging lenses, the test strip, developing procedures, contrast control with variable contrast filters, spotting and matting, archival processing. 

Unit-1
Teaching Hours:10
Introduction of Photography
 

Exposure to a variety of Analog and digital photographic techniques.

Basics of shots, sizes, and angles.

Technical aspects such as exposure triangle, composition, framing, and introduction to lighting.

 

Printing The enlarger, set up, timer use, enlarging lenses, the test strip, developing procedures, contrast control with variable contrast filters, spotting and matting, archival processing. 

Unit-1
Teaching Hours:10
Introduction of Photography
 

Exposure to a variety of Analog and digital photographic techniques.

Basics of shots, sizes, and angles.

Technical aspects such as exposure triangle, composition, framing, and introduction to lighting.

 

Printing The enlarger, set up, timer use, enlarging lenses, the test strip, developing procedures, contrast control with variable contrast filters, spotting and matting, archival processing. 

Unit-1
Teaching Hours:10
Introduction of Photography
 

Exposure to a variety of Analog and digital photographic techniques.

Basics of shots, sizes, and angles.

Technical aspects such as exposure triangle, composition, framing, and introduction to lighting.

 

Printing The enlarger, set up, timer use, enlarging lenses, the test strip, developing procedures, contrast control with variable contrast filters, spotting and matting, archival processing. 

Unit-1
Teaching Hours:10
Introduction of Photography
 

Exposure to a variety of Analog and digital photographic techniques.

Basics of shots, sizes, and angles.

Technical aspects such as exposure triangle, composition, framing, and introduction to lighting.

 

Printing The enlarger, set up, timer use, enlarging lenses, the test strip, developing procedures, contrast control with variable contrast filters, spotting and matting, archival processing. 

Unit-1
Teaching Hours:10
Introduction of Photography
 

Exposure to a variety of Analog and digital photographic techniques.

Basics of shots, sizes, and angles.

Technical aspects such as exposure triangle, composition, framing, and introduction to lighting.

 

Printing The enlarger, set up, timer use, enlarging lenses, the test strip, developing procedures, contrast control with variable contrast filters, spotting and matting, archival processing. 

Unit-1
Teaching Hours:10
Introduction of Photography
 

Exposure to a variety of Analog and digital photographic techniques.

Basics of shots, sizes, and angles.

Technical aspects such as exposure triangle, composition, framing, and introduction to lighting.

 

Printing The enlarger, set up, timer use, enlarging lenses, the test strip, developing procedures, contrast control with variable contrast filters, spotting and matting, archival processing. 

Unit-1
Teaching Hours:10
Introduction of Photography
 

Exposure to a variety of Analog and digital photographic techniques.

Basics of shots, sizes, and angles.

Technical aspects such as exposure triangle, composition, framing, and introduction to lighting.

 

Printing The enlarger, set up, timer use, enlarging lenses, the test strip, developing procedures, contrast control with variable contrast filters, spotting and matting, archival processing. 

Unit-2
Teaching Hours:8
Photographic Design
 

Introduction to contemporary and historic photographers and their works.

 

Understanding and applying visual design elements and principles in photography. 

Unit-2
Teaching Hours:8
Photographic Design
 

Introduction to contemporary and historic photographers and their works.

 

Understanding and applying visual design elements and principles in photography. 

Unit-2
Teaching Hours:8
Photographic Design
 

Introduction to contemporary and historic photographers and their works.

 

Understanding and applying visual design elements and principles in photography. 

Unit-2
Teaching Hours:8
Photographic Design
 

Introduction to contemporary and historic photographers and their works.

 

Understanding and applying visual design elements and principles in photography. 

Unit-2
Teaching Hours:8
Photographic Design
 

Introduction to contemporary and historic photographers and their works.

 

Understanding and applying visual design elements and principles in photography. 

Unit-2
Teaching Hours:8
Photographic Design
 

Introduction to contemporary and historic photographers and their works.

 

Understanding and applying visual design elements and principles in photography. 

Unit-2
Teaching Hours:8
Photographic Design
 

Introduction to contemporary and historic photographers and their works.

 

Understanding and applying visual design elements and principles in photography. 

Unit-2
Teaching Hours:8
Photographic Design
 

Introduction to contemporary and historic photographers and their works.

 

Understanding and applying visual design elements and principles in photography. 

Unit-2
Teaching Hours:8
Photographic Design
 

Introduction to contemporary and historic photographers and their works.

 

Understanding and applying visual design elements and principles in photography. 

Unit-2
Teaching Hours:8
Photographic Design
 

Introduction to contemporary and historic photographers and their works.

 

Understanding and applying visual design elements and principles in photography. 

Unit-2
Teaching Hours:8
Photographic Design
 

Introduction to contemporary and historic photographers and their works.

 

Understanding and applying visual design elements and principles in photography. 

Unit-2
Teaching Hours:8
Photographic Design
 

Introduction to contemporary and historic photographers and their works.

 

Understanding and applying visual design elements and principles in photography. 

Unit-2
Teaching Hours:8
Photographic Design
 

Introduction to contemporary and historic photographers and their works.

 

Understanding and applying visual design elements and principles in photography. 

Unit-2
Teaching Hours:8
Photographic Design
 

Introduction to contemporary and historic photographers and their works.

 

Understanding and applying visual design elements and principles in photography. 

Unit-3
Teaching Hours:8
Appreciation of photography
 

Multiple photographic practices such as documentary photography, fine art photography and fashion photography, product photography and architecture photography.

Moral and theoretical issues attached to the medium, such as photography’s relationships between truth, beauty, and fact, as well as the ethics of war photography.

 

Edward Weston and Ansel Adams in the 1930’s.

Unit-3
Teaching Hours:8
Appreciation of photography
 

Multiple photographic practices such as documentary photography, fine art photography and fashion photography, product photography and architecture photography.

Moral and theoretical issues attached to the medium, such as photography’s relationships between truth, beauty, and fact, as well as the ethics of war photography.

 

Edward Weston and Ansel Adams in the 1930’s.

Unit-3
Teaching Hours:8
Appreciation of photography
 

Multiple photographic practices such as documentary photography, fine art photography and fashion photography, product photography and architecture photography.

Moral and theoretical issues attached to the medium, such as photography’s relationships between truth, beauty, and fact, as well as the ethics of war photography.

 

Edward Weston and Ansel Adams in the 1930’s.

Unit-3
Teaching Hours:8
Appreciation of photography
 

Multiple photographic practices such as documentary photography, fine art photography and fashion photography, product photography and architecture photography.

Moral and theoretical issues attached to the medium, such as photography’s relationships between truth, beauty, and fact, as well as the ethics of war photography.

 

Edward Weston and Ansel Adams in the 1930’s.

Unit-3
Teaching Hours:8
Appreciation of photography
 

Multiple photographic practices such as documentary photography, fine art photography and fashion photography, product photography and architecture photography.

Moral and theoretical issues attached to the medium, such as photography’s relationships between truth, beauty, and fact, as well as the ethics of war photography.

 

Edward Weston and Ansel Adams in the 1930’s.

Unit-3
Teaching Hours:8
Appreciation of photography
 

Multiple photographic practices such as documentary photography, fine art photography and fashion photography, product photography and architecture photography.

Moral and theoretical issues attached to the medium, such as photography’s relationships between truth, beauty, and fact, as well as the ethics of war photography.

 

Edward Weston and Ansel Adams in the 1930’s.

Unit-3
Teaching Hours:8
Appreciation of photography
 

Multiple photographic practices such as documentary photography, fine art photography and fashion photography, product photography and architecture photography.

Moral and theoretical issues attached to the medium, such as photography’s relationships between truth, beauty, and fact, as well as the ethics of war photography.

 

Edward Weston and Ansel Adams in the 1930’s.

Unit-3
Teaching Hours:8
Appreciation of photography
 

Multiple photographic practices such as documentary photography, fine art photography and fashion photography, product photography and architecture photography.

Moral and theoretical issues attached to the medium, such as photography’s relationships between truth, beauty, and fact, as well as the ethics of war photography.

 

Edward Weston and Ansel Adams in the 1930’s.

Unit-3
Teaching Hours:8
Appreciation of photography
 

Multiple photographic practices such as documentary photography, fine art photography and fashion photography, product photography and architecture photography.

Moral and theoretical issues attached to the medium, such as photography’s relationships between truth, beauty, and fact, as well as the ethics of war photography.

 

Edward Weston and Ansel Adams in the 1930’s.

Unit-3
Teaching Hours:8
Appreciation of photography
 

Multiple photographic practices such as documentary photography, fine art photography and fashion photography, product photography and architecture photography.

Moral and theoretical issues attached to the medium, such as photography’s relationships between truth, beauty, and fact, as well as the ethics of war photography.

 

Edward Weston and Ansel Adams in the 1930’s.

Unit-3
Teaching Hours:8
Appreciation of photography
 

Multiple photographic practices such as documentary photography, fine art photography and fashion photography, product photography and architecture photography.

Moral and theoretical issues attached to the medium, such as photography’s relationships between truth, beauty, and fact, as well as the ethics of war photography.

 

Edward Weston and Ansel Adams in the 1930’s.

Unit-3
Teaching Hours:8
Appreciation of photography
 

Multiple photographic practices such as documentary photography, fine art photography and fashion photography, product photography and architecture photography.

Moral and theoretical issues attached to the medium, such as photography’s relationships between truth, beauty, and fact, as well as the ethics of war photography.

 

Edward Weston and Ansel Adams in the 1930’s.

Unit-3
Teaching Hours:8
Appreciation of photography
 

Multiple photographic practices such as documentary photography, fine art photography and fashion photography, product photography and architecture photography.

Moral and theoretical issues attached to the medium, such as photography’s relationships between truth, beauty, and fact, as well as the ethics of war photography.

 

Edward Weston and Ansel Adams in the 1930’s.

Unit-3
Teaching Hours:8
Appreciation of photography
 

Multiple photographic practices such as documentary photography, fine art photography and fashion photography, product photography and architecture photography.

Moral and theoretical issues attached to the medium, such as photography’s relationships between truth, beauty, and fact, as well as the ethics of war photography.

 

Edward Weston and Ansel Adams in the 1930’s.

Unit-4
Teaching Hours:4
Print media and Portfolio
 

Introduction to Print medium.

 

Portfolios (Digital Format) 

Unit-4
Teaching Hours:4
Print media and Portfolio
 

Introduction to Print medium.

 

Portfolios (Digital Format) 

Unit-4
Teaching Hours:4
Print media and Portfolio
 

Introduction to Print medium.

 

Portfolios (Digital Format) 

Unit-4
Teaching Hours:4
Print media and Portfolio
 

Introduction to Print medium.

 

Portfolios (Digital Format) 

Unit-4
Teaching Hours:4
Print media and Portfolio
 

Introduction to Print medium.

 

Portfolios (Digital Format) 

Unit-4
Teaching Hours:4
Print media and Portfolio
 

Introduction to Print medium.

 

Portfolios (Digital Format) 

Unit-4
Teaching Hours:4
Print media and Portfolio
 

Introduction to Print medium.

 

Portfolios (Digital Format) 

Unit-4
Teaching Hours:4
Print media and Portfolio
 

Introduction to Print medium.

 

Portfolios (Digital Format) 

Unit-4
Teaching Hours:4
Print media and Portfolio
 

Introduction to Print medium.

 

Portfolios (Digital Format) 

Unit-4
Teaching Hours:4
Print media and Portfolio
 

Introduction to Print medium.

 

Portfolios (Digital Format) 

Unit-4
Teaching Hours:4
Print media and Portfolio
 

Introduction to Print medium.

 

Portfolios (Digital Format) 

Unit-4
Teaching Hours:4
Print media and Portfolio
 

Introduction to Print medium.

 

Portfolios (Digital Format) 

Unit-4
Teaching Hours:4
Print media and Portfolio
 

Introduction to Print medium.

 

Portfolios (Digital Format) 

Unit-4
Teaching Hours:4
Print media and Portfolio
 

Introduction to Print medium.

 

Portfolios (Digital Format) 

Text Books And Reference Books:

1.      Schaeffer J. P. (1998) The Ansel Adams guide: Basic techniques of photography, Boston: Little Brown and Company.

2.      Horenstein, H. (1977) Beyond Basic Photography: A Technical Manual, Boston: Little Brown and Company.

 

3.      Craven, G. M.(1990) Object and Image: An Introduction to Photography, New Jersey: Prentice-Hall, Englewood Cliffs.

Essential Reading / Recommended Reading

1.      Peterson, B. (2016) Understanding Exposure, Fourth Edition, Random House USA Inc.

2.      DK (2015) Digital Photography Complete Course, DK; Reissue edition.

3.      Northrup T. & Northrup C. (2012) Tony Northrup's DSLR Book: How to Create Stunning Digital Photography, (2nd edition) Mason Press.

4.      Hunter, F., Biver S. & Fuqua P. (2015) Light Science & Magic: An Introduction to Photographic Lighting, Routledge, ISBN-10: 0415719402.

Peterson B. (2017) Understanding Colour in Photography: Using Colour, Composition, and Exposure to Create Vivid Photos, Random House US, ISBN-10 : 9780770433116 

Evaluation Pattern

The assessment pattern comprises of two components; the Continuous Internal Assessment (CIA) and the End Semester Examination (ESE). The weightage of marks for subjects having both CIA marks, as well as ESE marks, have a ratio of 50:50.

CONTINUOUS INTERNAL ASSESSMENT (CIA): 50%

Continuous Internal Assessment for this course  shall be conducted by the respective faculty in the form of different types of assignments. Students need to complete the assignments within the stipulated time for the award of marks.
A minimum of 50% in the CIA is required to appear for the End Semester Examination (ESE) of the course
Total CIA - 50 Marks

END SEMESTER EXAMINATION (ESE): 50%

Eligibility to appear for ESE is a score of a minimum of 50% in the CIA.
The course shall have a Viva Voce evaluated by an external examiner and internal examiner of the portfolio presentation.
Total ESE - 50 Marks

PASS CRITERIA

A student shall pass the course only on a minimum aggregate score (CIA+ESE) of 45% and a minimum CIA Score of 50% and an ESE score of 40%

BTGE655 - ACTING COURSE (2022 Batch)

Total Teaching Hours for Semester:30
No of Lecture Hours/Week:2
Max Marks:100
Credits:2

Course Objectives/Course Description

 

In this course the students are introduced different aspects of acting such as creating a character,

analyzing a script, working on voice and developing body language. At the end of the course the learners

will perform a monologue.

The course aims at the study and practice of Classical Acting. The development of individual imagination,

insight, skills and disciplines in the presentation of drama to audience.

Learning Outcome

CO1: To understand different aspects of acting and to perform a monologue

Unit-1
Teaching Hours:10
Unit 1
 

Inner characterization: History of acting, First performance,Art representation vs art of experiencing, Characterization and actor’s notebook, Stanislavski’s system, Objective and super-objective, Working with a script

 

 

Unit-1
Teaching Hours:10
Unit 1
 

Inner characterization: History of acting, First performance,Art representation vs art of experiencing, Characterization and actor’s notebook, Stanislavski’s system, Objective and super-objective, Working with a script

 

 

Unit-1
Teaching Hours:10
Unit 1
 

Inner characterization: History of acting, First performance,Art representation vs art of experiencing, Characterization and actor’s notebook, Stanislavski’s system, Objective and super-objective, Working with a script

 

 

Unit-1
Teaching Hours:10
Unit 1
 

Inner characterization: History of acting, First performance,Art representation vs art of experiencing, Characterization and actor’s notebook, Stanislavski’s system, Objective and super-objective, Working with a script

 

 

Unit-1
Teaching Hours:10
Unit 1
 

Inner characterization: History of acting, First performance,Art representation vs art of experiencing, Characterization and actor’s notebook, Stanislavski’s system, Objective and super-objective, Working with a script

 

 

Unit-1
Teaching Hours:10
Unit 1
 

Inner characterization: History of acting, First performance,Art representation vs art of experiencing, Characterization and actor’s notebook, Stanislavski’s system, Objective and super-objective, Working with a script

 

 

Unit-1
Teaching Hours:10
Unit 1
 

Inner characterization: History of acting, First performance,Art representation vs art of experiencing, Characterization and actor’s notebook, Stanislavski’s system, Objective and super-objective, Working with a script

 

 

Unit-1
Teaching Hours:10
Unit 1
 

Inner characterization: History of acting, First performance,Art representation vs art of experiencing, Characterization and actor’s notebook, Stanislavski’s system, Objective and super-objective, Working with a script

 

 

Unit-1
Teaching Hours:10
Unit 1
 

Inner characterization: History of acting, First performance,Art representation vs art of experiencing, Characterization and actor’s notebook, Stanislavski’s system, Objective and super-objective, Working with a script

 

 

Unit-1
Teaching Hours:10
Unit 1
 

Inner characterization: History of acting, First performance,Art representation vs art of experiencing, Characterization and actor’s notebook, Stanislavski’s system, Objective and super-objective, Working with a script

 

 

Unit-1
Teaching Hours:10
Unit 1
 

Inner characterization: History of acting, First performance,Art representation vs art of experiencing, Characterization and actor’s notebook, Stanislavski’s system, Objective and super-objective, Working with a script

 

 

Unit-1
Teaching Hours:10
Unit 1
 

Inner characterization: History of acting, First performance,Art representation vs art of experiencing, Characterization and actor’s notebook, Stanislavski’s system, Objective and super-objective, Working with a script

 

 

Unit-1
Teaching Hours:10
Unit 1
 

Inner characterization: History of acting, First performance,Art representation vs art of experiencing, Characterization and actor’s notebook, Stanislavski’s system, Objective and super-objective, Working with a script

 

 

Unit-1
Teaching Hours:10
Unit 1
 

Inner characterization: History of acting, First performance,Art representation vs art of experiencing, Characterization and actor’s notebook, Stanislavski’s system, Objective and super-objective, Working with a script

 

 

Unit-2
Teaching Hours:10
Unit 2
 

Outer characterization : Stanislavski’s system., Method of physical actions, Building character’s body language, Building character’s voice, 

 

Unit-2
Teaching Hours:10
Unit 2
 

Outer characterization : Stanislavski’s system., Method of physical actions, Building character’s body language, Building character’s voice, 

 

Unit-2
Teaching Hours:10
Unit 2
 

Outer characterization : Stanislavski’s system., Method of physical actions, Building character’s body language, Building character’s voice, 

 

Unit-2
Teaching Hours:10
Unit 2
 

Outer characterization : Stanislavski’s system., Method of physical actions, Building character’s body language, Building character’s voice, 

 

Unit-2
Teaching Hours:10
Unit 2
 

Outer characterization : Stanislavski’s system., Method of physical actions, Building character’s body language, Building character’s voice, 

 

Unit-2
Teaching Hours:10
Unit 2
 

Outer characterization : Stanislavski’s system., Method of physical actions, Building character’s body language, Building character’s voice, 

 

Unit-2
Teaching Hours:10
Unit 2
 

Outer characterization : Stanislavski’s system., Method of physical actions, Building character’s body language, Building character’s voice, 

 

Unit-2
Teaching Hours:10
Unit 2
 

Outer characterization : Stanislavski’s system., Method of physical actions, Building character’s body language, Building character’s voice, 

 

Unit-2
Teaching Hours:10
Unit 2
 

Outer characterization : Stanislavski’s system., Method of physical actions, Building character’s body language, Building character’s voice, 

 

Unit-2
Teaching Hours:10
Unit 2
 

Outer characterization : Stanislavski’s system., Method of physical actions, Building character’s body language, Building character’s voice, 

 

Unit-2
Teaching Hours:10
Unit 2
 

Outer characterization : Stanislavski’s system., Method of physical actions, Building character’s body language, Building character’s voice, 

 

Unit-2
Teaching Hours:10
Unit 2
 

Outer characterization : Stanislavski’s system., Method of physical actions, Building character’s body language, Building character’s voice, 

 

Unit-2
Teaching Hours:10
Unit 2
 

Outer characterization : Stanislavski’s system., Method of physical actions, Building character’s body language, Building character’s voice, 

 

Unit-2
Teaching Hours:10
Unit 2
 

Outer characterization : Stanislavski’s system., Method of physical actions, Building character’s body language, Building character’s voice, 

 

Unit-3
Teaching Hours:10
Unit 3
 

Performing a Monologue: Theatrical etude, Working with props, sets, light and costume, Creating atmosphere, Run-through, 

Unit-3
Teaching Hours:10
Unit 3
 

Performing a Monologue: Theatrical etude, Working with props, sets, light and costume, Creating atmosphere, Run-through, 

Unit-3
Teaching Hours:10
Unit 3
 

Performing a Monologue: Theatrical etude, Working with props, sets, light and costume, Creating atmosphere, Run-through, 

Unit-3
Teaching Hours:10
Unit 3
 

Performing a Monologue: Theatrical etude, Working with props, sets, light and costume, Creating atmosphere, Run-through, 

Unit-3
Teaching Hours:10
Unit 3
 

Performing a Monologue: Theatrical etude, Working with props, sets, light and costume, Creating atmosphere, Run-through, 

Unit-3
Teaching Hours:10
Unit 3
 

Performing a Monologue: Theatrical etude, Working with props, sets, light and costume, Creating atmosphere, Run-through, 

Unit-3
Teaching Hours:10
Unit 3
 

Performing a Monologue: Theatrical etude, Working with props, sets, light and costume, Creating atmosphere, Run-through, 

Unit-3
Teaching Hours:10
Unit 3
 

Performing a Monologue: Theatrical etude, Working with props, sets, light and costume, Creating atmosphere, Run-through, 

Unit-3
Teaching Hours:10
Unit 3
 

Performing a Monologue: Theatrical etude, Working with props, sets, light and costume, Creating atmosphere, Run-through, 

Unit-3
Teaching Hours:10
Unit 3
 

Performing a Monologue: Theatrical etude, Working with props, sets, light and costume, Creating atmosphere, Run-through, 

Unit-3
Teaching Hours:10
Unit 3
 

Performing a Monologue: Theatrical etude, Working with props, sets, light and costume, Creating atmosphere, Run-through, 

Unit-3
Teaching Hours:10
Unit 3
 

Performing a Monologue: Theatrical etude, Working with props, sets, light and costume, Creating atmosphere, Run-through, 

Unit-3
Teaching Hours:10
Unit 3
 

Performing a Monologue: Theatrical etude, Working with props, sets, light and costume, Creating atmosphere, Run-through, 

Unit-3
Teaching Hours:10
Unit 3
 

Performing a Monologue: Theatrical etude, Working with props, sets, light and costume, Creating atmosphere, Run-through, 

Text Books And Reference Books:

Stanislavsky, Constantine. “An Actor prepares.”

Essential Reading / Recommended Reading

Stanislavsky, Constantine. “An Actor prepares.”

Evaluation Pattern

The assessment of the students is happening throughout the course and will be completed with the final monologue performance. 

 

The assignments need to be submitted via Google Classroom by the given deadlines. 

Actor’s notebooks need to follow the given requirements. 

Monologues will be performed live.

 

Completing all the given assignments throughout the course –20 marks

Submission of actor’s notebook – 20 marks

Final monologue performance – 60 marks 

BTGE656 - CREATIVITY AND INNOVATION (2022 Batch)

Total Teaching Hours for Semester:30
No of Lecture Hours/Week:2
Max Marks:100
Credits:2

Course Objectives/Course Description

 

To equip students with skill and aptitude for creativity and innovation through

  1. Analyzing Problems:

To stimulate curiosity in students to identify the areas of gaps and opportunities and solutions that can be provided

  1. Creating Ideas:

To stimulate creativity in students to come up with ideas for the areas of gaps and opportunities

  1. To understand the creative process: Smart storming 

  2. Engineering Solutions: To understand Proof of Concept, Minimum Viable Proposition, and the Rapid Iteration Process

Learning Outcome

CO-1: Develop an aptitude for creative thinking and problem solving in the areas that drive their interest.

CO-2: Understand the benefits of team work and collaborative thinking

CO-3: Understand the three keys aspects of the creative process viz. ACES

CO-4: Develop projects to understand the various principles and elements of creativity and innovation

CO-5: Apply the concepts of IPR to verify the projects which may be patentable, design and copyright protected

Unit-1
Teaching Hours:6
Introduction
 

Creativity & Innovation, A journey through major breakthrough innovations around the world., Collaborative Creativity

Unit-1
Teaching Hours:6
Introduction
 

Creativity & Innovation, A journey through major breakthrough innovations around the world., Collaborative Creativity

Unit-1
Teaching Hours:6
Introduction
 

Creativity & Innovation, A journey through major breakthrough innovations around the world., Collaborative Creativity

Unit-1
Teaching Hours:6
Introduction
 

Creativity & Innovation, A journey through major breakthrough innovations around the world., Collaborative Creativity

Unit-1
Teaching Hours:6
Introduction
 

Creativity & Innovation, A journey through major breakthrough innovations around the world., Collaborative Creativity

Unit-1
Teaching Hours:6
Introduction
 

Creativity & Innovation, A journey through major breakthrough innovations around the world., Collaborative Creativity

Unit-1
Teaching Hours:6
Introduction
 

Creativity & Innovation, A journey through major breakthrough innovations around the world., Collaborative Creativity

Unit-1
Teaching Hours:6
Introduction
 

Creativity & Innovation, A journey through major breakthrough innovations around the world., Collaborative Creativity

Unit-1
Teaching Hours:6
Introduction
 

Creativity & Innovation, A journey through major breakthrough innovations around the world., Collaborative Creativity

Unit-1
Teaching Hours:6
Introduction
 

Creativity & Innovation, A journey through major breakthrough innovations around the world., Collaborative Creativity

Unit-1
Teaching Hours:6
Introduction
 

Creativity & Innovation, A journey through major breakthrough innovations around the world., Collaborative Creativity

Unit-1
Teaching Hours:6
Introduction
 

Creativity & Innovation, A journey through major breakthrough innovations around the world., Collaborative Creativity

Unit-1
Teaching Hours:6
Introduction
 

Creativity & Innovation, A journey through major breakthrough innovations around the world., Collaborative Creativity

Unit-1
Teaching Hours:6
Introduction
 

Creativity & Innovation, A journey through major breakthrough innovations around the world., Collaborative Creativity

Unit-2
Teaching Hours:6
The Creative Process Part I (Analyzing Problems)
 

Analyzing Problems (Smart Storming), Theory and practice, Rethinking Thinking Imagination Observing, Abstracting, Recognizing Patterns, Forming Patterns

Unit-2
Teaching Hours:6
The Creative Process Part I (Analyzing Problems)
 

Analyzing Problems (Smart Storming), Theory and practice, Rethinking Thinking Imagination Observing, Abstracting, Recognizing Patterns, Forming Patterns

Unit-2
Teaching Hours:6
The Creative Process Part I (Analyzing Problems)
 

Analyzing Problems (Smart Storming), Theory and practice, Rethinking Thinking Imagination Observing, Abstracting, Recognizing Patterns, Forming Patterns

Unit-2
Teaching Hours:6
The Creative Process Part I (Analyzing Problems)
 

Analyzing Problems (Smart Storming), Theory and practice, Rethinking Thinking Imagination Observing, Abstracting, Recognizing Patterns, Forming Patterns

Unit-2
Teaching Hours:6
The Creative Process Part I (Analyzing Problems)
 

Analyzing Problems (Smart Storming), Theory and practice, Rethinking Thinking Imagination Observing, Abstracting, Recognizing Patterns, Forming Patterns

Unit-2
Teaching Hours:6
The Creative Process Part I (Analyzing Problems)
 

Analyzing Problems (Smart Storming), Theory and practice, Rethinking Thinking Imagination Observing, Abstracting, Recognizing Patterns, Forming Patterns

Unit-2
Teaching Hours:6
The Creative Process Part I (Analyzing Problems)
 

Analyzing Problems (Smart Storming), Theory and practice, Rethinking Thinking Imagination Observing, Abstracting, Recognizing Patterns, Forming Patterns

Unit-2
Teaching Hours:6
The Creative Process Part I (Analyzing Problems)
 

Analyzing Problems (Smart Storming), Theory and practice, Rethinking Thinking Imagination Observing, Abstracting, Recognizing Patterns, Forming Patterns

Unit-2
Teaching Hours:6
The Creative Process Part I (Analyzing Problems)
 

Analyzing Problems (Smart Storming), Theory and practice, Rethinking Thinking Imagination Observing, Abstracting, Recognizing Patterns, Forming Patterns

Unit-2
Teaching Hours:6
The Creative Process Part I (Analyzing Problems)
 

Analyzing Problems (Smart Storming), Theory and practice, Rethinking Thinking Imagination Observing, Abstracting, Recognizing Patterns, Forming Patterns

Unit-2
Teaching Hours:6
The Creative Process Part I (Analyzing Problems)
 

Analyzing Problems (Smart Storming), Theory and practice, Rethinking Thinking Imagination Observing, Abstracting, Recognizing Patterns, Forming Patterns

Unit-2
Teaching Hours:6
The Creative Process Part I (Analyzing Problems)
 

Analyzing Problems (Smart Storming), Theory and practice, Rethinking Thinking Imagination Observing, Abstracting, Recognizing Patterns, Forming Patterns

Unit-2
Teaching Hours:6
The Creative Process Part I (Analyzing Problems)
 

Analyzing Problems (Smart Storming), Theory and practice, Rethinking Thinking Imagination Observing, Abstracting, Recognizing Patterns, Forming Patterns

Unit-2
Teaching Hours:6
The Creative Process Part I (Analyzing Problems)
 

Analyzing Problems (Smart Storming), Theory and practice, Rethinking Thinking Imagination Observing, Abstracting, Recognizing Patterns, Forming Patterns

Unit-3
Teaching Hours:6
The Creative Process Part II (Creating Ideas)
 

Creative Thinking Techniques and Methods, Body Thinking, Empathizing (Design Thinking), 

 

Dimensional Thinking Evolution and Evaluation of Ideas through design Thinking

Unit-3
Teaching Hours:6
The Creative Process Part II (Creating Ideas)
 

Creative Thinking Techniques and Methods, Body Thinking, Empathizing (Design Thinking), 

 

Dimensional Thinking Evolution and Evaluation of Ideas through design Thinking

Unit-3
Teaching Hours:6
The Creative Process Part II (Creating Ideas)
 

Creative Thinking Techniques and Methods, Body Thinking, Empathizing (Design Thinking), 

 

Dimensional Thinking Evolution and Evaluation of Ideas through design Thinking

Unit-3
Teaching Hours:6
The Creative Process Part II (Creating Ideas)
 

Creative Thinking Techniques and Methods, Body Thinking, Empathizing (Design Thinking), 

 

Dimensional Thinking Evolution and Evaluation of Ideas through design Thinking

Unit-3
Teaching Hours:6
The Creative Process Part II (Creating Ideas)
 

Creative Thinking Techniques and Methods, Body Thinking, Empathizing (Design Thinking), 

 

Dimensional Thinking Evolution and Evaluation of Ideas through design Thinking

Unit-3
Teaching Hours:6
The Creative Process Part II (Creating Ideas)
 

Creative Thinking Techniques and Methods, Body Thinking, Empathizing (Design Thinking), 

 

Dimensional Thinking Evolution and Evaluation of Ideas through design Thinking

Unit-3
Teaching Hours:6
The Creative Process Part II (Creating Ideas)
 

Creative Thinking Techniques and Methods, Body Thinking, Empathizing (Design Thinking), 

 

Dimensional Thinking Evolution and Evaluation of Ideas through design Thinking

Unit-3
Teaching Hours:6
The Creative Process Part II (Creating Ideas)
 

Creative Thinking Techniques and Methods, Body Thinking, Empathizing (Design Thinking), 

 

Dimensional Thinking Evolution and Evaluation of Ideas through design Thinking

Unit-3
Teaching Hours:6
The Creative Process Part II (Creating Ideas)
 

Creative Thinking Techniques and Methods, Body Thinking, Empathizing (Design Thinking), 

 

Dimensional Thinking Evolution and Evaluation of Ideas through design Thinking

Unit-3
Teaching Hours:6
The Creative Process Part II (Creating Ideas)
 

Creative Thinking Techniques and Methods, Body Thinking, Empathizing (Design Thinking), 

 

Dimensional Thinking Evolution and Evaluation of Ideas through design Thinking

Unit-3
Teaching Hours:6
The Creative Process Part II (Creating Ideas)
 

Creative Thinking Techniques and Methods, Body Thinking, Empathizing (Design Thinking), 

 

Dimensional Thinking Evolution and Evaluation of Ideas through design Thinking

Unit-3
Teaching Hours:6
The Creative Process Part II (Creating Ideas)
 

Creative Thinking Techniques and Methods, Body Thinking, Empathizing (Design Thinking), 

 

Dimensional Thinking Evolution and Evaluation of Ideas through design Thinking

Unit-3
Teaching Hours:6
The Creative Process Part II (Creating Ideas)
 

Creative Thinking Techniques and Methods, Body Thinking, Empathizing (Design Thinking), 

 

Dimensional Thinking Evolution and Evaluation of Ideas through design Thinking

Unit-3
Teaching Hours:6
The Creative Process Part II (Creating Ideas)
 

Creative Thinking Techniques and Methods, Body Thinking, Empathizing (Design Thinking), 

 

Dimensional Thinking Evolution and Evaluation of Ideas through design Thinking

Unit-4
Teaching Hours:6
The Creative Process Part III (Engineering Solutions)
 

Proof of Concept, Minimum Viable Proposition, Rapid Iteration Process

Unit-4
Teaching Hours:6
The Creative Process Part III (Engineering Solutions)
 

Proof of Concept, Minimum Viable Proposition, Rapid Iteration Process

Unit-4
Teaching Hours:6
The Creative Process Part III (Engineering Solutions)
 

Proof of Concept, Minimum Viable Proposition, Rapid Iteration Process

Unit-4
Teaching Hours:6
The Creative Process Part III (Engineering Solutions)
 

Proof of Concept, Minimum Viable Proposition, Rapid Iteration Process

Unit-4
Teaching Hours:6
The Creative Process Part III (Engineering Solutions)
 

Proof of Concept, Minimum Viable Proposition, Rapid Iteration Process

Unit-4
Teaching Hours:6
The Creative Process Part III (Engineering Solutions)
 

Proof of Concept, Minimum Viable Proposition, Rapid Iteration Process

Unit-4
Teaching Hours:6
The Creative Process Part III (Engineering Solutions)
 

Proof of Concept, Minimum Viable Proposition, Rapid Iteration Process

Unit-4
Teaching Hours:6
The Creative Process Part III (Engineering Solutions)
 

Proof of Concept, Minimum Viable Proposition, Rapid Iteration Process

Unit-4
Teaching Hours:6
The Creative Process Part III (Engineering Solutions)
 

Proof of Concept, Minimum Viable Proposition, Rapid Iteration Process

Unit-4
Teaching Hours:6
The Creative Process Part III (Engineering Solutions)
 

Proof of Concept, Minimum Viable Proposition, Rapid Iteration Process

Unit-4
Teaching Hours:6
The Creative Process Part III (Engineering Solutions)
 

Proof of Concept, Minimum Viable Proposition, Rapid Iteration Process

Unit-4
Teaching Hours:6
The Creative Process Part III (Engineering Solutions)
 

Proof of Concept, Minimum Viable Proposition, Rapid Iteration Process

Unit-4
Teaching Hours:6
The Creative Process Part III (Engineering Solutions)
 

Proof of Concept, Minimum Viable Proposition, Rapid Iteration Process

Unit-4
Teaching Hours:6
The Creative Process Part III (Engineering Solutions)
 

Proof of Concept, Minimum Viable Proposition, Rapid Iteration Process

Unit-5
Teaching Hours:6
Innovation and IPR
 

Patents, Designs, Copyrights, Geographical Indications, Trademarks, Trade Secret

Unit-5
Teaching Hours:6
Innovation and IPR
 

Patents, Designs, Copyrights, Geographical Indications, Trademarks, Trade Secret

Unit-5
Teaching Hours:6
Innovation and IPR
 

Patents, Designs, Copyrights, Geographical Indications, Trademarks, Trade Secret

Unit-5
Teaching Hours:6
Innovation and IPR
 

Patents, Designs, Copyrights, Geographical Indications, Trademarks, Trade Secret

Unit-5
Teaching Hours:6
Innovation and IPR
 

Patents, Designs, Copyrights, Geographical Indications, Trademarks, Trade Secret

Unit-5
Teaching Hours:6
Innovation and IPR
 

Patents, Designs, Copyrights, Geographical Indications, Trademarks, Trade Secret

Unit-5
Teaching Hours:6
Innovation and IPR
 

Patents, Designs, Copyrights, Geographical Indications, Trademarks, Trade Secret

Unit-5
Teaching Hours:6
Innovation and IPR
 

Patents, Designs, Copyrights, Geographical Indications, Trademarks, Trade Secret

Unit-5
Teaching Hours:6
Innovation and IPR
 

Patents, Designs, Copyrights, Geographical Indications, Trademarks, Trade Secret

Unit-5
Teaching Hours:6
Innovation and IPR
 

Patents, Designs, Copyrights, Geographical Indications, Trademarks, Trade Secret

Unit-5
Teaching Hours:6
Innovation and IPR
 

Patents, Designs, Copyrights, Geographical Indications, Trademarks, Trade Secret

Unit-5
Teaching Hours:6
Innovation and IPR
 

Patents, Designs, Copyrights, Geographical Indications, Trademarks, Trade Secret

Unit-5
Teaching Hours:6
Innovation and IPR
 

Patents, Designs, Copyrights, Geographical Indications, Trademarks, Trade Secret

Unit-5
Teaching Hours:6
Innovation and IPR
 

Patents, Designs, Copyrights, Geographical Indications, Trademarks, Trade Secret

Text Books And Reference Books:

 Activity Based Teaching. No text books and reference books

Essential Reading / Recommended Reading

 Activity Based Teaching. No text books and reference books

Evaluation Pattern

This course consists of Overall Cia for 100 marks. No End Semester Examination for this course.

BTGE657 - PAINTING AND SKETCHING (2022 Batch)

Total Teaching Hours for Semester:30
No of Lecture Hours/Week:2
Max Marks:50
Credits:2

Course Objectives/Course Description

 

The course will develop the skills required to represent elements of nature and surrounding objects. Students will learn how to use the appropriate medium for representing their thought process. The course will examine the representation skills through exercises on sketching and rendering.

Learning Outcome

CO3: Students will learn how to represent their ideas and thought processes diagrammatically through sketching and rendering.

Unit-1
Teaching Hours:10
Representation through Sketching
 

 

This unit will look at sketching as a medium to represent ideas and thought processes. Freehand Drawing Techniques, Landscape drawing .

Unit-1
Teaching Hours:10
Representation through Sketching
 

 

This unit will look at sketching as a medium to represent ideas and thought processes. Freehand Drawing Techniques, Landscape drawing .

Unit-1
Teaching Hours:10
Representation through Sketching
 

 

This unit will look at sketching as a medium to represent ideas and thought processes. Freehand Drawing Techniques, Landscape drawing .

Unit-1
Teaching Hours:10
Representation through Sketching
 

 

This unit will look at sketching as a medium to represent ideas and thought processes. Freehand Drawing Techniques, Landscape drawing .

Unit-1
Teaching Hours:10
Representation through Sketching
 

 

This unit will look at sketching as a medium to represent ideas and thought processes. Freehand Drawing Techniques, Landscape drawing .

Unit-1
Teaching Hours:10
Representation through Sketching
 

 

This unit will look at sketching as a medium to represent ideas and thought processes. Freehand Drawing Techniques, Landscape drawing .

Unit-1
Teaching Hours:10
Representation through Sketching
 

 

This unit will look at sketching as a medium to represent ideas and thought processes. Freehand Drawing Techniques, Landscape drawing .

Unit-1
Teaching Hours:10
Representation through Sketching
 

 

This unit will look at sketching as a medium to represent ideas and thought processes. Freehand Drawing Techniques, Landscape drawing .

Unit-1
Teaching Hours:10
Representation through Sketching
 

 

This unit will look at sketching as a medium to represent ideas and thought processes. Freehand Drawing Techniques, Landscape drawing .

Unit-1
Teaching Hours:10
Representation through Sketching
 

 

This unit will look at sketching as a medium to represent ideas and thought processes. Freehand Drawing Techniques, Landscape drawing .

Unit-1
Teaching Hours:10
Representation through Sketching
 

 

This unit will look at sketching as a medium to represent ideas and thought processes. Freehand Drawing Techniques, Landscape drawing .

Unit-1
Teaching Hours:10
Representation through Sketching
 

 

This unit will look at sketching as a medium to represent ideas and thought processes. Freehand Drawing Techniques, Landscape drawing .

Unit-1
Teaching Hours:10
Representation through Sketching
 

 

This unit will look at sketching as a medium to represent ideas and thought processes. Freehand Drawing Techniques, Landscape drawing .

Unit-1
Teaching Hours:10
Representation through Sketching
 

 

This unit will look at sketching as a medium to represent ideas and thought processes. Freehand Drawing Techniques, Landscape drawing .

Unit-2
Teaching Hours:10
Introduction to Watercolour Painting Techniques
 

 

Execute simple exercises in Collages to understand Flat Wash, Graded Wash, Wet on Dry, Wet on Wet. Techniques of Blooming, Splattering, Sponging will be used as a medium of representation. Study of brush strokes as a finish.How 

Unit-2
Teaching Hours:10
Introduction to Watercolour Painting Techniques
 

 

Execute simple exercises in Collages to understand Flat Wash, Graded Wash, Wet on Dry, Wet on Wet. Techniques of Blooming, Splattering, Sponging will be used as a medium of representation. Study of brush strokes as a finish.How 

Unit-2
Teaching Hours:10
Introduction to Watercolour Painting Techniques
 

 

Execute simple exercises in Collages to understand Flat Wash, Graded Wash, Wet on Dry, Wet on Wet. Techniques of Blooming, Splattering, Sponging will be used as a medium of representation. Study of brush strokes as a finish.How 

Unit-2
Teaching Hours:10
Introduction to Watercolour Painting Techniques
 

 

Execute simple exercises in Collages to understand Flat Wash, Graded Wash, Wet on Dry, Wet on Wet. Techniques of Blooming, Splattering, Sponging will be used as a medium of representation. Study of brush strokes as a finish.How 

Unit-2
Teaching Hours:10
Introduction to Watercolour Painting Techniques
 

 

Execute simple exercises in Collages to understand Flat Wash, Graded Wash, Wet on Dry, Wet on Wet. Techniques of Blooming, Splattering, Sponging will be used as a medium of representation. Study of brush strokes as a finish.How 

Unit-2
Teaching Hours:10
Introduction to Watercolour Painting Techniques
 

 

Execute simple exercises in Collages to understand Flat Wash, Graded Wash, Wet on Dry, Wet on Wet. Techniques of Blooming, Splattering, Sponging will be used as a medium of representation. Study of brush strokes as a finish.How 

Unit-2
Teaching Hours:10
Introduction to Watercolour Painting Techniques
 

 

Execute simple exercises in Collages to understand Flat Wash, Graded Wash, Wet on Dry, Wet on Wet. Techniques of Blooming, Splattering, Sponging will be used as a medium of representation. Study of brush strokes as a finish.How 

Unit-2
Teaching Hours:10
Introduction to Watercolour Painting Techniques
 

 

Execute simple exercises in Collages to understand Flat Wash, Graded Wash, Wet on Dry, Wet on Wet. Techniques of Blooming, Splattering, Sponging will be used as a medium of representation. Study of brush strokes as a finish.How 

Unit-2
Teaching Hours:10
Introduction to Watercolour Painting Techniques
 

 

Execute simple exercises in Collages to understand Flat Wash, Graded Wash, Wet on Dry, Wet on Wet. Techniques of Blooming, Splattering, Sponging will be used as a medium of representation. Study of brush strokes as a finish.How 

Unit-2
Teaching Hours:10
Introduction to Watercolour Painting Techniques
 

 

Execute simple exercises in Collages to understand Flat Wash, Graded Wash, Wet on Dry, Wet on Wet. Techniques of Blooming, Splattering, Sponging will be used as a medium of representation. Study of brush strokes as a finish.How 

Unit-2
Teaching Hours:10
Introduction to Watercolour Painting Techniques
 

 

Execute simple exercises in Collages to understand Flat Wash, Graded Wash, Wet on Dry, Wet on Wet. Techniques of Blooming, Splattering, Sponging will be used as a medium of representation. Study of brush strokes as a finish.How 

Unit-2
Teaching Hours:10
Introduction to Watercolour Painting Techniques
 

 

Execute simple exercises in Collages to understand Flat Wash, Graded Wash, Wet on Dry, Wet on Wet. Techniques of Blooming, Splattering, Sponging will be used as a medium of representation. Study of brush strokes as a finish.How 

Unit-2
Teaching Hours:10
Introduction to Watercolour Painting Techniques
 

 

Execute simple exercises in Collages to understand Flat Wash, Graded Wash, Wet on Dry, Wet on Wet. Techniques of Blooming, Splattering, Sponging will be used as a medium of representation. Study of brush strokes as a finish.How 

Unit-2
Teaching Hours:10
Introduction to Watercolour Painting Techniques
 

 

Execute simple exercises in Collages to understand Flat Wash, Graded Wash, Wet on Dry, Wet on Wet. Techniques of Blooming, Splattering, Sponging will be used as a medium of representation. Study of brush strokes as a finish.How 

Unit-3
Teaching Hours:10
Introduction to Soft Pastel Techniques
 

To create simple elements in nature Plants, Different types of Trees,water bodies in architecture. etc.

Unit-3
Teaching Hours:10
Introduction to Soft Pastel Techniques
 

To create simple elements in nature Plants, Different types of Trees,water bodies in architecture. etc.

Unit-3
Teaching Hours:10
Introduction to Soft Pastel Techniques
 

To create simple elements in nature Plants, Different types of Trees,water bodies in architecture. etc.

Unit-3
Teaching Hours:10
Introduction to Soft Pastel Techniques
 

To create simple elements in nature Plants, Different types of Trees,water bodies in architecture. etc.

Unit-3
Teaching Hours:10
Introduction to Soft Pastel Techniques
 

To create simple elements in nature Plants, Different types of Trees,water bodies in architecture. etc.

Unit-3
Teaching Hours:10
Introduction to Soft Pastel Techniques
 

To create simple elements in nature Plants, Different types of Trees,water bodies in architecture. etc.

Unit-3
Teaching Hours:10
Introduction to Soft Pastel Techniques
 

To create simple elements in nature Plants, Different types of Trees,water bodies in architecture. etc.

Unit-3
Teaching Hours:10
Introduction to Soft Pastel Techniques
 

To create simple elements in nature Plants, Different types of Trees,water bodies in architecture. etc.

Unit-3
Teaching Hours:10
Introduction to Soft Pastel Techniques
 

To create simple elements in nature Plants, Different types of Trees,water bodies in architecture. etc.

Unit-3
Teaching Hours:10
Introduction to Soft Pastel Techniques
 

To create simple elements in nature Plants, Different types of Trees,water bodies in architecture. etc.

Unit-3
Teaching Hours:10
Introduction to Soft Pastel Techniques
 

To create simple elements in nature Plants, Different types of Trees,water bodies in architecture. etc.

Unit-3
Teaching Hours:10
Introduction to Soft Pastel Techniques
 

To create simple elements in nature Plants, Different types of Trees,water bodies in architecture. etc.

Unit-3
Teaching Hours:10
Introduction to Soft Pastel Techniques
 

To create simple elements in nature Plants, Different types of Trees,water bodies in architecture. etc.

Unit-3
Teaching Hours:10
Introduction to Soft Pastel Techniques
 

To create simple elements in nature Plants, Different types of Trees,water bodies in architecture. etc.

Text Books And Reference Books:

Drawing : (Ching, Francis D K)

Rendering With Pen and Ink / (Gill Robet W)
Essential Reading / Recommended Reading

milind mulick watercolor

sketchbook by milind mulick

 

Evaluation Pattern

The following courses do not have ESE. It has only Overall CIA (out of 100). This will be treated as the final ESE mark. Total mark = 100.

BTGE658 - DESIGN THINKING (2022 Batch)

Total Teaching Hours for Semester:30
No of Lecture Hours/Week:2
Max Marks:100
Credits:2

Course Objectives/Course Description

 

Course Description:

Throughout the course students will work on three different challenges; one focused on product design, one focused on service design and one focused on systems or business design. By starting with a very tangible challenge around product design, students will be able to hone their skills in the process before moving into more complex challenges around business and systems level design.

 

The course will be teamwork-oriented, but students will also complete readings and independent activities that support the group work and ensure individual depth of knowledge.

 

Course objectives:  

Expose students to the design process as a tool for innovation.

Develop students’ professional skills in client management and communication.

Demonstrate the value of developing a local network and assist students in making lasting connections with the business community.

Students develop a portfolio of work to set them apart in the job market.

Provide an authentic opportunity for students to develop teamwork and leadership skills.

Learning Outcome

CO1: Design Process 1. Students develop a strong understanding of the Design Process and how it can be applied in a variety of business settings 2. Students learn to research and understand the unique needs of a company around specific challenges 3. Students learn to build empathy for target audiences from different cultures 4. Students learn to develop and test innovative ideas through a rapid iteration cycle 5. Students learn how to create physical prototypes / a visual representation of an idea 6. Students develop the willingness to take a risk and the ability to deal with failure

CO2: Professionalism 1. Students develop professional interpersonal and presentation skills 2. Students develop professional communication skills such as interviewing and crafting professional emails 3. Students learn to take ownership of the quality of their work and final products 4. Students understand their duty to maintain ethical standards in product and strategy design 5. Students understand the value of and have tools to develop a strong network

CO3: Leadership and teamwork 1. Students develop self awareness of personal leadership style and how to effectively work as a member of a team 2. Students collaborate on a variety of projects 3. Students develop communication skills necessary to facilitate high performance team formation and maintenance (e.g., leveraging the skills and abilities of all team members, valuing cross-disciplinary/cultural contributions, engaging in difficult conversations and resolving conflict)

Unit-1
Teaching Hours:10
Module 1: Intro to Design Thinking and Product Design
 

Introduction to Design Thinking

Introduction to Design Research Strategies

Introduction to Synthesis

Introduction to Ideation and Prototyping Strategies

Unit-1
Teaching Hours:10
Module 1: Intro to Design Thinking and Product Design
 

Introduction to Design Thinking

Introduction to Design Research Strategies

Introduction to Synthesis

Introduction to Ideation and Prototyping Strategies

Unit-1
Teaching Hours:10
Module 1: Intro to Design Thinking and Product Design
 

Introduction to Design Thinking

Introduction to Design Research Strategies

Introduction to Synthesis

Introduction to Ideation and Prototyping Strategies

Unit-1
Teaching Hours:10
Module 1: Intro to Design Thinking and Product Design
 

Introduction to Design Thinking

Introduction to Design Research Strategies

Introduction to Synthesis

Introduction to Ideation and Prototyping Strategies

Unit-1
Teaching Hours:10
Module 1: Intro to Design Thinking and Product Design
 

Introduction to Design Thinking

Introduction to Design Research Strategies

Introduction to Synthesis

Introduction to Ideation and Prototyping Strategies

Unit-1
Teaching Hours:10
Module 1: Intro to Design Thinking and Product Design
 

Introduction to Design Thinking

Introduction to Design Research Strategies

Introduction to Synthesis

Introduction to Ideation and Prototyping Strategies

Unit-1
Teaching Hours:10
Module 1: Intro to Design Thinking and Product Design
 

Introduction to Design Thinking

Introduction to Design Research Strategies

Introduction to Synthesis

Introduction to Ideation and Prototyping Strategies

Unit-1
Teaching Hours:10
Module 1: Intro to Design Thinking and Product Design
 

Introduction to Design Thinking

Introduction to Design Research Strategies

Introduction to Synthesis

Introduction to Ideation and Prototyping Strategies

Unit-1
Teaching Hours:10
Module 1: Intro to Design Thinking and Product Design
 

Introduction to Design Thinking

Introduction to Design Research Strategies

Introduction to Synthesis

Introduction to Ideation and Prototyping Strategies

Unit-1
Teaching Hours:10
Module 1: Intro to Design Thinking and Product Design
 

Introduction to Design Thinking

Introduction to Design Research Strategies

Introduction to Synthesis

Introduction to Ideation and Prototyping Strategies

Unit-1
Teaching Hours:10
Module 1: Intro to Design Thinking and Product Design
 

Introduction to Design Thinking

Introduction to Design Research Strategies

Introduction to Synthesis

Introduction to Ideation and Prototyping Strategies

Unit-1
Teaching Hours:10
Module 1: Intro to Design Thinking and Product Design
 

Introduction to Design Thinking

Introduction to Design Research Strategies

Introduction to Synthesis

Introduction to Ideation and Prototyping Strategies

Unit-1
Teaching Hours:10
Module 1: Intro to Design Thinking and Product Design
 

Introduction to Design Thinking

Introduction to Design Research Strategies

Introduction to Synthesis

Introduction to Ideation and Prototyping Strategies

Unit-2
Teaching Hours:10
Module 2: Team Work and Service Design
 

Team work discussion + Launch of Service challenge

Design Research - tools for observation + immersion

Journey mapping and ideation

Develop Final Presentations

Final Presentations and Leadership Styles discussion

Unit-2
Teaching Hours:10
Module 2: Team Work and Service Design
 

Team work discussion + Launch of Service challenge

Design Research - tools for observation + immersion

Journey mapping and ideation

Develop Final Presentations

Final Presentations and Leadership Styles discussion

Unit-2
Teaching Hours:10
Module 2: Team Work and Service Design
 

Team work discussion + Launch of Service challenge

Design Research - tools for observation + immersion

Journey mapping and ideation

Develop Final Presentations

Final Presentations and Leadership Styles discussion

Unit-2
Teaching Hours:10
Module 2: Team Work and Service Design
 

Team work discussion + Launch of Service challenge

Design Research - tools for observation + immersion

Journey mapping and ideation

Develop Final Presentations

Final Presentations and Leadership Styles discussion

Unit-2
Teaching Hours:10
Module 2: Team Work and Service Design
 

Team work discussion + Launch of Service challenge

Design Research - tools for observation + immersion

Journey mapping and ideation

Develop Final Presentations

Final Presentations and Leadership Styles discussion

Unit-2
Teaching Hours:10
Module 2: Team Work and Service Design
 

Team work discussion + Launch of Service challenge

Design Research - tools for observation + immersion

Journey mapping and ideation

Develop Final Presentations

Final Presentations and Leadership Styles discussion

Unit-2
Teaching Hours:10
Module 2: Team Work and Service Design
 

Team work discussion + Launch of Service challenge

Design Research - tools for observation + immersion

Journey mapping and ideation

Develop Final Presentations

Final Presentations and Leadership Styles discussion

Unit-2
Teaching Hours:10
Module 2: Team Work and Service Design
 

Team work discussion + Launch of Service challenge

Design Research - tools for observation + immersion

Journey mapping and ideation

Develop Final Presentations

Final Presentations and Leadership Styles discussion

Unit-2
Teaching Hours:10
Module 2: Team Work and Service Design
 

Team work discussion + Launch of Service challenge

Design Research - tools for observation + immersion

Journey mapping and ideation

Develop Final Presentations

Final Presentations and Leadership Styles discussion

Unit-2
Teaching Hours:10
Module 2: Team Work and Service Design
 

Team work discussion + Launch of Service challenge

Design Research - tools for observation + immersion

Journey mapping and ideation

Develop Final Presentations

Final Presentations and Leadership Styles discussion

Unit-2
Teaching Hours:10
Module 2: Team Work and Service Design
 

Team work discussion + Launch of Service challenge

Design Research - tools for observation + immersion

Journey mapping and ideation

Develop Final Presentations

Final Presentations and Leadership Styles discussion

Unit-2
Teaching Hours:10
Module 2: Team Work and Service Design
 

Team work discussion + Launch of Service challenge

Design Research - tools for observation + immersion

Journey mapping and ideation

Develop Final Presentations

Final Presentations and Leadership Styles discussion

Unit-2
Teaching Hours:10
Module 2: Team Work and Service Design
 

Team work discussion + Launch of Service challenge

Design Research - tools for observation + immersion

Journey mapping and ideation

Develop Final Presentations

Final Presentations and Leadership Styles discussion

Unit-3
Teaching Hours:10
Module 3: Business or Systems Design
 

Launch final challenge – system or student challenge

Business Model Canvas and Design Research

Visualizing ideas

Communicating ideas and effective storytelling

Final Presentations and class celebration

Unit-3
Teaching Hours:10
Module 3: Business or Systems Design
 

Launch final challenge – system or student challenge

Business Model Canvas and Design Research

Visualizing ideas

Communicating ideas and effective storytelling

Final Presentations and class celebration

Unit-3
Teaching Hours:10
Module 3: Business or Systems Design
 

Launch final challenge – system or student challenge

Business Model Canvas and Design Research

Visualizing ideas

Communicating ideas and effective storytelling

Final Presentations and class celebration

Unit-3
Teaching Hours:10
Module 3: Business or Systems Design
 

Launch final challenge – system or student challenge

Business Model Canvas and Design Research

Visualizing ideas

Communicating ideas and effective storytelling

Final Presentations and class celebration

Unit-3
Teaching Hours:10
Module 3: Business or Systems Design
 

Launch final challenge – system or student challenge

Business Model Canvas and Design Research

Visualizing ideas

Communicating ideas and effective storytelling

Final Presentations and class celebration

Unit-3
Teaching Hours:10
Module 3: Business or Systems Design
 

Launch final challenge – system or student challenge

Business Model Canvas and Design Research

Visualizing ideas

Communicating ideas and effective storytelling

Final Presentations and class celebration

Unit-3
Teaching Hours:10
Module 3: Business or Systems Design
 

Launch final challenge – system or student challenge

Business Model Canvas and Design Research

Visualizing ideas

Communicating ideas and effective storytelling

Final Presentations and class celebration

Unit-3
Teaching Hours:10
Module 3: Business or Systems Design
 

Launch final challenge – system or student challenge

Business Model Canvas and Design Research

Visualizing ideas

Communicating ideas and effective storytelling

Final Presentations and class celebration

Unit-3
Teaching Hours:10
Module 3: Business or Systems Design
 

Launch final challenge – system or student challenge

Business Model Canvas and Design Research

Visualizing ideas

Communicating ideas and effective storytelling

Final Presentations and class celebration

Unit-3
Teaching Hours:10
Module 3: Business or Systems Design
 

Launch final challenge – system or student challenge

Business Model Canvas and Design Research

Visualizing ideas

Communicating ideas and effective storytelling

Final Presentations and class celebration

Unit-3
Teaching Hours:10
Module 3: Business or Systems Design
 

Launch final challenge – system or student challenge

Business Model Canvas and Design Research

Visualizing ideas

Communicating ideas and effective storytelling

Final Presentations and class celebration

Unit-3
Teaching Hours:10
Module 3: Business or Systems Design
 

Launch final challenge – system or student challenge

Business Model Canvas and Design Research

Visualizing ideas

Communicating ideas and effective storytelling

Final Presentations and class celebration

Unit-3
Teaching Hours:10
Module 3: Business or Systems Design
 

Launch final challenge – system or student challenge

Business Model Canvas and Design Research

Visualizing ideas

Communicating ideas and effective storytelling

Final Presentations and class celebration

Text Books And Reference Books:

Essential References:

1. Design Your Thinking: The Mindsets, Toolsets and Skill Sets for Creative Problem-solving Hardcover – 23 December 2020, by Pavan Soni.

2. The Design Thinking Toolbox: A Guide to Mastering the Most Popular and Valuable Innovation Methods, by Michael Lewrick, Patrick Link, Larry Leifer.

3. Design Thinking: Understanding How Designers Think and Work, by Nigel Cross, BERG, Oxford, Newyork.

Essential Reading / Recommended Reading

Recommended References:

1. HBR's 10 Must Reads on Design Thinking (with featured article "Design Thinking" By Tim Brown) Paperback – 10 August 2020, by  Publisher ‏ : ‎ Harvard Business Review Press (10 August 2020); Penguin Random House.

2. Change by Design, Revised and Updated: How Design Thinking Transforms Organizations and Inspires Innovation,  by Tim Brown. Publisher HarperCollins, 2019; ISBN 0062856715, 9780062856715.

3. This is Service Design Thinking: Basics, Tools, Cases, by Marc Stickdorn, Jakob Schneider, Publisher BIS Publ., 2012; ISBN 906369279X, 9789063692797

Evaluation Pattern

Evaluation Pattern:

This courses do not have CIA-1-2-3 and ESE. It has only Overall CIA (out of 100). This will be treated as the final ESE.

 

The following case studies will be given for the evaluation of overall CIA.

 

1. Case Studies focused on product design.

2. Case Studies focused on service design.

3. Case Studies focused on systems or business design.

BTGE659 - FOUNDATIONS OF AVIATION (2022 Batch)

Total Teaching Hours for Semester:30
No of Lecture Hours/Week:2
Max Marks:100
Credits:2

Course Objectives/Course Description

 

A student successfully completing this course will be able to:

Explain basic terms and concepts in air transportation, including commercial, military, and general aviation; air traffic control. Identify on the parts of an aircraft, classify the aircraft types and Construct models of an Aircraft. Understand the types of Aero engines and analyse the impact of meteorology in Aviation.

Learning Outcome

CO1: Interpret the fundamental principles of flight based on theorems and parts of the Aircraft

CO2: Summarize the types of aircrafts and illustrate modelling of an Aircraft

CO3: Identify the types of Aero engines and Make use of Meteorology

Unit-1
Teaching Hours:10
Introduction to Principles of Flight
 

Development of Aviation- Introduction- Laws of Motion -Bernoulli’s Theorem and Venturi Effect – Aero foil- Forces on an Aircraft- Flaps and Slats- Stalling- Thrust, Basic Flight Instruments- Introduction of Radar- Requirement of Navigation

Unit-1
Teaching Hours:10
Introduction to Principles of Flight
 

Development of Aviation- Introduction- Laws of Motion -Bernoulli’s Theorem and Venturi Effect – Aero foil- Forces on an Aircraft- Flaps and Slats- Stalling- Thrust, Basic Flight Instruments- Introduction of Radar- Requirement of Navigation

Unit-1
Teaching Hours:10
Introduction to Principles of Flight
 

Development of Aviation- Introduction- Laws of Motion -Bernoulli’s Theorem and Venturi Effect – Aero foil- Forces on an Aircraft- Flaps and Slats- Stalling- Thrust, Basic Flight Instruments- Introduction of Radar- Requirement of Navigation

Unit-1
Teaching Hours:10
Introduction to Principles of Flight
 

Development of Aviation- Introduction- Laws of Motion -Bernoulli’s Theorem and Venturi Effect – Aero foil- Forces on an Aircraft- Flaps and Slats- Stalling- Thrust, Basic Flight Instruments- Introduction of Radar- Requirement of Navigation

Unit-1
Teaching Hours:10
Introduction to Principles of Flight
 

Development of Aviation- Introduction- Laws of Motion -Bernoulli’s Theorem and Venturi Effect – Aero foil- Forces on an Aircraft- Flaps and Slats- Stalling- Thrust, Basic Flight Instruments- Introduction of Radar- Requirement of Navigation

Unit-1
Teaching Hours:10
Introduction to Principles of Flight
 

Development of Aviation- Introduction- Laws of Motion -Bernoulli’s Theorem and Venturi Effect – Aero foil- Forces on an Aircraft- Flaps and Slats- Stalling- Thrust, Basic Flight Instruments- Introduction of Radar- Requirement of Navigation

Unit-1
Teaching Hours:10
Introduction to Principles of Flight
 

Development of Aviation- Introduction- Laws of Motion -Bernoulli’s Theorem and Venturi Effect – Aero foil- Forces on an Aircraft- Flaps and Slats- Stalling- Thrust, Basic Flight Instruments- Introduction of Radar- Requirement of Navigation

Unit-1
Teaching Hours:10
Introduction to Principles of Flight
 

Development of Aviation- Introduction- Laws of Motion -Bernoulli’s Theorem and Venturi Effect – Aero foil- Forces on an Aircraft- Flaps and Slats- Stalling- Thrust, Basic Flight Instruments- Introduction of Radar- Requirement of Navigation

Unit-1
Teaching Hours:10
Introduction to Principles of Flight
 

Development of Aviation- Introduction- Laws of Motion -Bernoulli’s Theorem and Venturi Effect – Aero foil- Forces on an Aircraft- Flaps and Slats- Stalling- Thrust, Basic Flight Instruments- Introduction of Radar- Requirement of Navigation

Unit-1
Teaching Hours:10
Introduction to Principles of Flight
 

Development of Aviation- Introduction- Laws of Motion -Bernoulli’s Theorem and Venturi Effect – Aero foil- Forces on an Aircraft- Flaps and Slats- Stalling- Thrust, Basic Flight Instruments- Introduction of Radar- Requirement of Navigation

Unit-1
Teaching Hours:10
Introduction to Principles of Flight
 

Development of Aviation- Introduction- Laws of Motion -Bernoulli’s Theorem and Venturi Effect – Aero foil- Forces on an Aircraft- Flaps and Slats- Stalling- Thrust, Basic Flight Instruments- Introduction of Radar- Requirement of Navigation

Unit-1
Teaching Hours:10
Introduction to Principles of Flight
 

Development of Aviation- Introduction- Laws of Motion -Bernoulli’s Theorem and Venturi Effect – Aero foil- Forces on an Aircraft- Flaps and Slats- Stalling- Thrust, Basic Flight Instruments- Introduction of Radar- Requirement of Navigation

Unit-1
Teaching Hours:10
Introduction to Principles of Flight
 

Development of Aviation- Introduction- Laws of Motion -Bernoulli’s Theorem and Venturi Effect – Aero foil- Forces on an Aircraft- Flaps and Slats- Stalling- Thrust, Basic Flight Instruments- Introduction of Radar- Requirement of Navigation

Unit-1
Teaching Hours:10
Introduction to Principles of Flight
 

Development of Aviation- Introduction- Laws of Motion -Bernoulli’s Theorem and Venturi Effect – Aero foil- Forces on an Aircraft- Flaps and Slats- Stalling- Thrust, Basic Flight Instruments- Introduction of Radar- Requirement of Navigation

Unit-2
Teaching Hours:10
Aircrafts and Aeromodelling
 

Airfield Layout- Rules of the Air- Circuit Procedure ATC / RT Procedure Aircraft Controls- Fuselage – Main Tail Plane Ailerons- Elevators- Rudder –Landing Gear.

 Fighters- Transports- Helicopters- Foreign Aircraft History of Aero modelling- Materials used in Aero modelling - Types of Aero models

Unit-2
Teaching Hours:10
Aircrafts and Aeromodelling
 

Airfield Layout- Rules of the Air- Circuit Procedure ATC / RT Procedure Aircraft Controls- Fuselage – Main Tail Plane Ailerons- Elevators- Rudder –Landing Gear.

 Fighters- Transports- Helicopters- Foreign Aircraft History of Aero modelling- Materials used in Aero modelling - Types of Aero models

Unit-2
Teaching Hours:10
Aircrafts and Aeromodelling
 

Airfield Layout- Rules of the Air- Circuit Procedure ATC / RT Procedure Aircraft Controls- Fuselage – Main Tail Plane Ailerons- Elevators- Rudder –Landing Gear.

 Fighters- Transports- Helicopters- Foreign Aircraft History of Aero modelling- Materials used in Aero modelling - Types of Aero models

Unit-2
Teaching Hours:10
Aircrafts and Aeromodelling
 

Airfield Layout- Rules of the Air- Circuit Procedure ATC / RT Procedure Aircraft Controls- Fuselage – Main Tail Plane Ailerons- Elevators- Rudder –Landing Gear.

 Fighters- Transports- Helicopters- Foreign Aircraft History of Aero modelling- Materials used in Aero modelling - Types of Aero models

Unit-2
Teaching Hours:10
Aircrafts and Aeromodelling
 

Airfield Layout- Rules of the Air- Circuit Procedure ATC / RT Procedure Aircraft Controls- Fuselage – Main Tail Plane Ailerons- Elevators- Rudder –Landing Gear.

 Fighters- Transports- Helicopters- Foreign Aircraft History of Aero modelling- Materials used in Aero modelling - Types of Aero models

Unit-2
Teaching Hours:10
Aircrafts and Aeromodelling
 

Airfield Layout- Rules of the Air- Circuit Procedure ATC / RT Procedure Aircraft Controls- Fuselage – Main Tail Plane Ailerons- Elevators- Rudder –Landing Gear.

 Fighters- Transports- Helicopters- Foreign Aircraft History of Aero modelling- Materials used in Aero modelling - Types of Aero models

Unit-2
Teaching Hours:10
Aircrafts and Aeromodelling
 

Airfield Layout- Rules of the Air- Circuit Procedure ATC / RT Procedure Aircraft Controls- Fuselage – Main Tail Plane Ailerons- Elevators- Rudder –Landing Gear.

 Fighters- Transports- Helicopters- Foreign Aircraft History of Aero modelling- Materials used in Aero modelling - Types of Aero models

Unit-2
Teaching Hours:10
Aircrafts and Aeromodelling
 

Airfield Layout- Rules of the Air- Circuit Procedure ATC / RT Procedure Aircraft Controls- Fuselage – Main Tail Plane Ailerons- Elevators- Rudder –Landing Gear.

 Fighters- Transports- Helicopters- Foreign Aircraft History of Aero modelling- Materials used in Aero modelling - Types of Aero models

Unit-2
Teaching Hours:10
Aircrafts and Aeromodelling
 

Airfield Layout- Rules of the Air- Circuit Procedure ATC / RT Procedure Aircraft Controls- Fuselage – Main Tail Plane Ailerons- Elevators- Rudder –Landing Gear.

 Fighters- Transports- Helicopters- Foreign Aircraft History of Aero modelling- Materials used in Aero modelling - Types of Aero models

Unit-2
Teaching Hours:10
Aircrafts and Aeromodelling
 

Airfield Layout- Rules of the Air- Circuit Procedure ATC / RT Procedure Aircraft Controls- Fuselage – Main Tail Plane Ailerons- Elevators- Rudder –Landing Gear.

 Fighters- Transports- Helicopters- Foreign Aircraft History of Aero modelling- Materials used in Aero modelling - Types of Aero models

Unit-2
Teaching Hours:10
Aircrafts and Aeromodelling
 

Airfield Layout- Rules of the Air- Circuit Procedure ATC / RT Procedure Aircraft Controls- Fuselage – Main Tail Plane Ailerons- Elevators- Rudder –Landing Gear.

 Fighters- Transports- Helicopters- Foreign Aircraft History of Aero modelling- Materials used in Aero modelling - Types of Aero models

Unit-2
Teaching Hours:10
Aircrafts and Aeromodelling
 

Airfield Layout- Rules of the Air- Circuit Procedure ATC / RT Procedure Aircraft Controls- Fuselage – Main Tail Plane Ailerons- Elevators- Rudder –Landing Gear.

 Fighters- Transports- Helicopters- Foreign Aircraft History of Aero modelling- Materials used in Aero modelling - Types of Aero models

Unit-2
Teaching Hours:10
Aircrafts and Aeromodelling
 

Airfield Layout- Rules of the Air- Circuit Procedure ATC / RT Procedure Aircraft Controls- Fuselage – Main Tail Plane Ailerons- Elevators- Rudder –Landing Gear.

 Fighters- Transports- Helicopters- Foreign Aircraft History of Aero modelling- Materials used in Aero modelling - Types of Aero models

Unit-2
Teaching Hours:10
Aircrafts and Aeromodelling
 

Airfield Layout- Rules of the Air- Circuit Procedure ATC / RT Procedure Aircraft Controls- Fuselage – Main Tail Plane Ailerons- Elevators- Rudder –Landing Gear.

 Fighters- Transports- Helicopters- Foreign Aircraft History of Aero modelling- Materials used in Aero modelling - Types of Aero models

Unit-3
Teaching Hours:10
Aero Engines and Meteorology
 

Introduction of Aero engines - Types of Engines-Piston Engines -Jet Engines – Turboprop Engines, Importance of Meteorology in Aviation- Atmosphere - Clouds and Precipitation - Visibility – Humidity and Condensation

Unit-3
Teaching Hours:10
Aero Engines and Meteorology
 

Introduction of Aero engines - Types of Engines-Piston Engines -Jet Engines – Turboprop Engines, Importance of Meteorology in Aviation- Atmosphere - Clouds and Precipitation - Visibility – Humidity and Condensation

Unit-3
Teaching Hours:10
Aero Engines and Meteorology
 

Introduction of Aero engines - Types of Engines-Piston Engines -Jet Engines – Turboprop Engines, Importance of Meteorology in Aviation- Atmosphere - Clouds and Precipitation - Visibility – Humidity and Condensation

Unit-3
Teaching Hours:10
Aero Engines and Meteorology
 

Introduction of Aero engines - Types of Engines-Piston Engines -Jet Engines – Turboprop Engines, Importance of Meteorology in Aviation- Atmosphere - Clouds and Precipitation - Visibility – Humidity and Condensation

Unit-3
Teaching Hours:10
Aero Engines and Meteorology
 

Introduction of Aero engines - Types of Engines-Piston Engines -Jet Engines – Turboprop Engines, Importance of Meteorology in Aviation- Atmosphere - Clouds and Precipitation - Visibility – Humidity and Condensation

Unit-3
Teaching Hours:10
Aero Engines and Meteorology
 

Introduction of Aero engines - Types of Engines-Piston Engines -Jet Engines – Turboprop Engines, Importance of Meteorology in Aviation- Atmosphere - Clouds and Precipitation - Visibility – Humidity and Condensation

Unit-3
Teaching Hours:10
Aero Engines and Meteorology
 

Introduction of Aero engines - Types of Engines-Piston Engines -Jet Engines – Turboprop Engines, Importance of Meteorology in Aviation- Atmosphere - Clouds and Precipitation - Visibility – Humidity and Condensation

Unit-3
Teaching Hours:10
Aero Engines and Meteorology
 

Introduction of Aero engines - Types of Engines-Piston Engines -Jet Engines – Turboprop Engines, Importance of Meteorology in Aviation- Atmosphere - Clouds and Precipitation - Visibility – Humidity and Condensation

Unit-3
Teaching Hours:10
Aero Engines and Meteorology
 

Introduction of Aero engines - Types of Engines-Piston Engines -Jet Engines – Turboprop Engines, Importance of Meteorology in Aviation- Atmosphere - Clouds and Precipitation - Visibility – Humidity and Condensation

Unit-3
Teaching Hours:10
Aero Engines and Meteorology
 

Introduction of Aero engines - Types of Engines-Piston Engines -Jet Engines – Turboprop Engines, Importance of Meteorology in Aviation- Atmosphere - Clouds and Precipitation - Visibility – Humidity and Condensation

Unit-3
Teaching Hours:10
Aero Engines and Meteorology
 

Introduction of Aero engines - Types of Engines-Piston Engines -Jet Engines – Turboprop Engines, Importance of Meteorology in Aviation- Atmosphere - Clouds and Precipitation - Visibility – Humidity and Condensation

Unit-3
Teaching Hours:10
Aero Engines and Meteorology
 

Introduction of Aero engines - Types of Engines-Piston Engines -Jet Engines – Turboprop Engines, Importance of Meteorology in Aviation- Atmosphere - Clouds and Precipitation - Visibility – Humidity and Condensation

Unit-3
Teaching Hours:10
Aero Engines and Meteorology
 

Introduction of Aero engines - Types of Engines-Piston Engines -Jet Engines – Turboprop Engines, Importance of Meteorology in Aviation- Atmosphere - Clouds and Precipitation - Visibility – Humidity and Condensation

Unit-3
Teaching Hours:10
Aero Engines and Meteorology
 

Introduction of Aero engines - Types of Engines-Piston Engines -Jet Engines – Turboprop Engines, Importance of Meteorology in Aviation- Atmosphere - Clouds and Precipitation - Visibility – Humidity and Condensation

Text Books And Reference Books:

Text Books:

• Airwing Cadet Handbook, Specialized Subject SD/SW, Maxwell Press, 2016.

• Introduction to Aerospace Engineering: Basic Principles of Flight, Ethirajan Rathakrishnan, Wiley Press, 2021.

 

 

Essential Reading / Recommended Reading

.

Evaluation Pattern

This Course do not have CIA 1/2/3. It has Overall CIA(out of 100 and will be Converted to 50) and ESE ( out of 100 and will be converted to 50). Total Marks=100.

ELC631P - VLSI DESIGN (2022 Batch)

Total Teaching Hours for Semester:75
No of Lecture Hours/Week:5
Max Marks:100
Credits:4

Course Objectives/Course Description

 

This course aims atintroducing the technology, design concepts required in the design of Very Large Scale Integrated Circuits.

Learning Outcome

CO1: To analyze the CMOS characteristics

CO2: To define strategy for designing the CMOS circuits

CO3: To describe CMOS process technology

CO4: To understand the features of FPGA and ASIC technology

CO5: To familiarize the system verilog as a hardware description and hardware verification language

Unit-1
Teaching Hours:9
MOSFET FUNDAMENTALS
 

Fundamentals of MOSFETs, Long channel MOSFETs, Moore’s law, semiconductor industry technology nodes, short channel effects, leakage currents, high-k. Principle of nanotransistor, Electrochemical potential, Poisson Equation, Self-consistent solution of the channel potential, Current calculation for non-equilibrium potential

Unit-2
Teaching Hours:9
MOSFET SWITCHING APPLICATIONS
 

MOSFETS as switches, Basic logic gates in CMOS, Complex logic gates, Transmission gates: Muxes and latches, CMOS chip design options:Precharge-Evaluate logic, Static and Dynamic CMOS logic circuits, Combinational Circuit Design, Sequential Circuit Design, Circuit Design of Latches and Flip-Flops

Unit-3
Teaching Hours:9
VLSI DESIGN FLOW
 

VLSI Design Flow, Overview of IC industry, CMOS Technologies (Nwell, Pwell, Twin-Tub, SOI, BiCMOS), Layout Design Rules, Stick Diagrams, Euler’s Rule for Physical Design

Unit-4
Teaching Hours:9
FPGA and ASIC
 

 

An overview of the features of advanced FPGAs, IP cores, Softcore processors, Design  examples  using  Xilinx  FPGAs and Verilog HDL  - Interfacing  using  FPGA:  Case study of recent FPGA Architectures.

ASIC design flow, Full custom ASICs, Std. Cell based ASICs, Gate Array based ASICs Channeled, Channel less and structured GA

Unit-5
Teaching Hours:9
SYSTEM VERILOG
 

Introduction to System Verilog-Verification guidelines - Data types - Procedural Statements & Routines - Test Bench- Basic OOP-System 

Text Books And Reference Books:

 

T1. Ayan Banerjee, Neil H. E. Weste, David Harris, “CMOS VLSI Design: A Circuits and Systems Perspective” (English) 4th  Edition, 2010

 

T2. Weste-Eshraghian – “Principles of CMOS VLSI Design”, 2nd Edition, 2004

 

T3. Wayne  Wolf,  “FPGA  Based  System  Design”,  Prentices  Hall  Modern  Semiconductor  Design Series.  

 

T4. M.J.S.Smith, “Application Specific integrated circuits”, Pearson Education, 2007

T5. Chris Spear ,”Systemverilog For Verification: A Guide to Learning the Testbench Language Features”,Springer, 2006

Essential Reading / Recommended Reading

 

R1. Pucknell DA & Eshraghian K, “Basic VLSI Design”, PHI

 

R2. John P. Uyemura, “Introduction to VLSI circuits and systems”, John Wiley

 

R3. Peter.J.Ashenden, “Digital Design: An Embedded Systems Approach Using Verilog”, Elsevier 2010

 

R4. Samir Palnitkar, “Verilog HDL”, 2 edition, Pearson Education, 2003

R5. Streetman B.G and Banerjee S, “Solid state electronic devices” (Vol. 10). Upper Saddle River: Pearson/Prentice Hall, 2006

Evaluation Pattern

Theory CIA - 30 marks
CIA will be conducted for 50 marks. Later the marks will be scaled down to 30 marks.
Components of the CIA:
CIA I : Subject Assignments / Online Tests : 10 marks
CIA II : Mid Semester Examination (Theory) : 25 marks

CIAIII:Quiz/Seminar/Case Studies/Project/Innovative Assignments/presentations
/publications : 10 marks
Attendance : 05 marks
Total : 50 marks
Mid Semester Examination (MSE) : Theory Papers:
The MSE is conducted for 50 marks of 2 hours duration.
Question paper pattern; Five out of Six questions have to be answered. Each question carries 10
marks
Theory ESE - 30 marks
End Semester Examination (ESE):
The ESE is conducted for 100 marks of 3 hours duration. (100 marks will be scaled down to 30
marks)
Practical - 35 marks
Practical assessment depends on the student's lab discipline, regular attendance, conduction of the
lab, observation and record submission and final lab exam.
Attendance - 5 marks
In total, the course is evaluated for 100 (30+30+35+5) marks.

ELC632P - INTRODUCTION TO MACHINE LEARNING USING PYTHON (2022 Batch)

Total Teaching Hours for Semester:75
No of Lecture Hours/Week:5
Max Marks:100
Credits:4

Course Objectives/Course Description

 

This course provides an introduction to basic skill set required in this fast expanding field of machine learning. Students will learn relevant basics in machine learning such as regression, clustering and classification. In addition, this course introduces advanced Python programming as a standard and common language for machine learning. This course is proposed to meet the growing business needs of individuals skilled in artificial intelligence, data analytics, statistical programming and other software skills. The proposed course will combine theory and practice to enable the student to gain the necessary knowledge to compete in the ever changing work environment

Learning Outcome

CO1: Apply the notion of an multivariant calculus to lead to min/max of a function

CO2: Apply Engineering problems as mathematical optimization problems.

CO3: Apply the understanding of the type of optimization problem and find the optimum value of the objective function

CO4: Apply the fundamental concepts of graph theory

CO5: Apply algorithms and theorems from graph theory on solving problems

Unit-1
Teaching Hours:9
INTRODUCTION TO MACHINE LEARNING
 

Introduction to Machine Learning: Introduction. Different types of learning, Hypothesis space and inductive bias, Evaluation. Training and test sets, cross validation. Linear Regression: Introduction, Linear regression, Python exercise on linear regression

Unit-2
Teaching Hours:9
DECISION BASED AND INSTANCE LEARNING
 

Introduction, Decision tree representation, appropriate problems for decision tree learning, the basic decision tree algorithm, hypothesis space search in decision tree learning, inductive bias in decision tree learning, issues in decision tree learning, Python exercise on Decision Tree. Instance based Learning: K nearest neighbor, the Curse of Dimensionality, Feature Selection: forward search, backward search, univariate , multivariate feature selection approach, Feature reduction (Principal Component Analysis) , Python exercise on KNN and PCA. Recommender System: Content based system, Collaborative filtering based

Unit-3
Teaching Hours:9
PROBABILITY AND BAYES LEARNING
 

Bayesian Learning, Naïve Bayes, Python exercise on Naïve Bayes, Logistic Regression. Support Vector Machine: Introduction, the Dual formulation, Maximum margin with noise, nonlinear SVM and Kernel function, solution to dual problem, python exercise on SVM

Unit-4
Teaching Hours:9
ARTIFICIAL NEURAL NETWORKS
 

Introduction, Biological motivation, ANN representation, appropriate problem for ANN learning, Perceptron, multilayer networks and the back propagation algorithm, python exercise on neural network. Introduction to Computational Learning Theory: Introduction, sample complexity, finite hypothesis space, VC dimension

Unit-5
Teaching Hours:9
ENSEMBLES
 

Introduction, Bagging and boosting, Random forest - Clustering: Introduction, K-mean clustering, agglomerative hierarchical clustering, Python exercise on k-mean clustering

Text Books And Reference Books:

T1. Machine Learning. Tom Mitchell. First Edition, McGraw- Hill, 1997

Essential Reading / Recommended Reading

R1. Introduction to Machine Learning Edition 2, by EthemAlpaydin

R2. Kevin P. Murphy, “Machine Learning: A Probabilistic Perspective”, MIT Press, 2012

R3. Christopher Bishop, “Pattern Recognition and Machine Learning” Springer, 2007

Evaluation Pattern

As per University Norms

ELC635 - SERVICE LEARNING (2022 Batch)

Total Teaching Hours for Semester:7
No of Lecture Hours/Week:2
Max Marks:100
Credits:2

Course Objectives/Course Description

 

To enhance students' learning by enabling them to practice skills and test classroom knowledge through related service experiences in the local community

Learning Outcome

CO1: Apply the concepts of electronics & communication to solve given real world societal problems through prototypes

CO2: Design solutions to given real world societal problems through working prototypes

CO3: Select appropriate hardware and software as per the requirement of the project designed to solve given real world societal problems

CO4: Understand the impact of the developed projects on environmental factors

CO5: Demonstrate project management skills including handling the finances in doing projects for given real world societal problems

Unit-1
Teaching Hours:5
UNIT I
 

Properties of Soil: Soil - definition - major components - soil forming processes- soil profile -Physical properties - texture – structure-absolute specific gravity - capillary and non-capillary porosity - soil colour - soil consistency - plasticity. Soil air - soil temperature - soil water - soil moisture constants – classification of soil water. Soil water movement. Soil colloids - organic – inorganic. Ion exchange- soil organic matter - pH - nutrient availability. Introduction to precision Agriculture

Unit-2
Teaching Hours:5
UNIT II
 

Sensors for Precision Farming: Soil electrical conductivity as a function of soil water content-Near infrared reflectance spectroscopy-prediction of soil macronutrients content using near infrared spectroscopy

Unit-3
Teaching Hours:5
UNIT III
 

GPS/GIS for Precision Farming: GPS satellites and their orbits-components of a GPS receiver-Accuracy and errors of a GPS receiver-Differential correction-Introduction to Geographic information system-Analyzing GIS

Field work: simple operation on a GPS receiver-how to use a GPS receiver-Locating and plotting coordinates on a map.

 

Unit-4
Teaching Hours:5
Unit IV
 

Spatial Data Collection and Soil Sampling: Spatial features and attributes-identifying spatial data-creating a data dictionary-analyzing spatial data and features-Soil Sampling: Dividing a field into grids for sampling-pros and cons of grid sampling-exploring alternatives to grid sampling

Unit-5
Teaching Hours:5
Unit V
 

Precision Agriculture system Design: Wireless sensor networks for precision agriculture-Sensor motes: TelosB mote, MicaZ motes-prototype wireless sensor network for precision agriculture-design and deploy a wireless sensor network for precision agriculture-WSN for precision agriculture using WiFi and ZigBee-WSN for precision agriculture using custom protocol.

Text Books And Reference Books:

1.      Terry A.Brase, “Precision Agriculture” Thomson/Delmar Learning, 2006

2.      Qin Zhang, “ Precision Agriculture Technology for Crop Farming”, CRC Press, 2015

3.    

 

Essential Reading / Recommended Reading

  Jao, J.; Bo Sun; Kui Wu, "A Prototype Wireless Sensor Network for Precision Agriculture," in Distributed Computing Systems Workshops (ICDCSW), 2013 IEEE 33rd International Conference on , vol., no., pp.280-285, 8-11 July 2013

4.      Tuan Dinh Le; Dat Ho Tan, "Design and deploy a wireless sensor network for precision agriculture," in Information and Computer Science (NICS), 2015 2nd National Foundation for Science and Technology Development Conference on , vol., no., pp.294-299, 16-18 Sept. 2015

5.      Maribeth Price, “Mastering ArcGIS”, 6th Edition, McGraw Hill Co., 2103

 

 

Evaluation Pattern

As per University Norms

ELC644E02 - AUTOMOTIVE ELECTRONICS (2022 Batch)

Total Teaching Hours for Semester:45
No of Lecture Hours/Week:3
Max Marks:100
Credits:3

Course Objectives/Course Description

 

The aim of this course is to enable student to understand the complete dynamics of automotive electronics, design and implementation of the electronics that contributes to the safety of the automobiles, add-on features, and comforts. 

Learning Outcome

CO1: Implement various control requirements in the automotive system

CO2: Comprehend dashboard electronics and engine system electronics

CO3: Identify various physical parameters that are to be sensed and monitored for maintaining the stability of the vehicle under dynamic conditions

CO4: Understand and implement the controls and actuator system pertaining to the comfort and safety of commuters

CO5: Design sensor network for mechanical fault diagnostics in an automotive vehicle

Unit-1
Teaching Hours:9
AUTOMOTIVE FUNDAMENTALS
 

Use of Electronics In The Automobile, Antilock Brake Systems, (ABS), Electronic steering control, Power steering, Traction control, Electronically controlled suspension

Unit-2
Teaching Hours:9
AUTOMOTIVE INSTRUMENTATION CONTROL
 

Sampling, Measurement and signal conversion of various parameters.  Sensors and Actuators, Applications of sensors and actuators

Unit-3
Teaching Hours:9
BASICS OF ELECTRONIC ENGINE CONTROL
 

Integrated body- Climate controls, Motivation for Electronic Engine Control, Concept of An Electronic Engine Control System, Definition of General Terms, Definition of Engine Performance Terms, Electronic fuel control system, Engine control sequence, Electronic Ignition,  air flow rate sensor, Indirect measurement of mass air flow, Engine crankshaft angular position sensor, Automotive engine control actuators, Digital engine control, Engine speed sensor ,Timing sensor for ignition and fuel delivery, Electronic ignition control systems, Safety systems,

Interior safety, Lighting, Entertainment systems

Unit-4
Teaching Hours:9
VEHICLE MOTION CONTROL AND AUTOMOTIVE DIAGNOSTICS
 

Cruise control system, Digital cruise control, Timing light, Engine analyzer, On-board and off-board diagnostics, Expert systems. Stepper motor based actuator, Cruise control electronics, Vacuum – antilock braking system, Electronic suspension system Electronic steering control, Computer-based instrumentation system, Sampling and Input\output signal conversion, Fuel quantity measurement, Coolant temperature measurement, Oil pressure measurement, Vehicle speed measurement, Display devices, Trip-Information- Computer, Occupant protection systems

Unit-5
Teaching Hours:9
FUTURE AUTOMOTIVE ELECTRONIC SYSTEMS
 

Alternative Fuel Engines, Collision Wide Range Air/Fuel Sensor, Alternative Engine, Low Tire Pressure Warning System, Collision avoidance Radar Warning Systems, Low Tire Pressure Warning System, Radio Navigation, Advance Driver information System. Alternative-Fuel Engines, Transmission Control , Collision Avoidance Radar Warning System, Low Tire Pressure Warning System, Speech Synthesis Multiplexing in Automobiles, Control Signal Multiplexing, Navigation Sensors, Radio Navigation, Sign post Navigation , Dead Reckoning Navigation Future Technology, Voice Recognition Cell Phone Dialing Advanced Driver information System, Automatic Driving Control

Text Books And Reference Books:

T1.A William B. Ribbens, "Understanding Automotive Electronics",6th Edition SAMS/Elsevier publishing, 2007

Essential Reading / Recommended Reading

R1. Robert Bosch Gmbh,"Automotive Electrics and Automotive Electronics-Systems and Components, Networking and Hybrid Drive", 5th Edition, Springer, Vieweg,  2007

Evaluation Pattern

As per University Norms

ELC645E03 - BIG DATA ANALYTICS (2022 Batch)

Total Teaching Hours for Semester:45
No of Lecture Hours/Week:3
Max Marks:100
Credits:3

Course Objectives/Course Description

 

This course provides an overview about the fundamentals of big data analytics, analyze the big data using intelligent techniques, understand the various search methods and visualization technique and also to use various techniques for mining data stream

Learning Outcome

CO1: Explain the tools and processes involved in big data analysis

CO2: Describe the architecture and concepts related to mining of data streams

CO3: Demonstrate basic operations on big data using HADOOP

CO4: Explain the frameworks of big data using Pig and Hive tools

CO5: Apply regression models and visualizations for predictive data analysis on given applications

Unit-1
Teaching Hours:9
INTRODUCTION
 

Introduction to big data : Introduction to Big Data Platform – Challenges of Conventional Systems - Intelligent data analysis – Nature of Data - Analytic Processes and Tools - Analysis vs Reporting

Unit-2
Teaching Hours:9
MINING DATA STREAMS
 

Introduction To Streams Concepts – Stream Data Model and Architecture - Stream Computing - Sampling Data in a Stream – Filtering Streams – Counting Distinct Elements in a Stream – Estimating Moments – Counting Oneness in a Window – Decaying Window - Real time Analytics Platform(RTAP) Applications - Case Studies - Real Time Sentiment Analysis- Stock Market Predictions

Unit-3
Teaching Hours:9
HADOOP
 

History of Hadoop- the Hadoop Distributed File System – Components of Hadoop Analysing the Data with Hadoop- Scaling Out- Hadoop Streaming- Design of HDFS-Java interfaces to HDFS Basics- Developing a Map Reduce Application-How Map Reduce Works-Anatomy of a Map Reduce Job run-Failures-Job Scheduling-Shuffle and Sort – Task execution - Map Reduce Types and Formats- Map Reduce FeaturesHadoop environment.

Unit-4
Teaching Hours:9
FRAMEWORKS
 

Applications on Big Data Using Pig and Hive – Data processing operators in Pig – Hive services – HiveQL – Querying Data in Hive - fundamentals of HBase and ZooKeeper - IBM InfoSphere BigInsights and Streams

Unit-5
Teaching Hours:9
PREDICTIVE ANALYTICS
 

Simple linear regression- Multiple linear regression- Interpretation 5 of regression coefficients. Visualizations - Visual data analysis techniques- interaction techniques - Systems and applications

Text Books And Reference Books:

T1. Michael Berthold, David J. Hand, “Intelligent Data Analysis”, Springer, 2007

T2. Tom White “Hadoop: The Definitive Guide” Third Edition, O’reilly Media, 2012

T3. Chris Eaton, Dirk DeRoos, Tom Deutsch, George Lapis, Paul Zikopoulos, “Understanding Big Data: Analytics for Enterprise Class Hadoop and Streaming Data”, McGrawHill Publishing, 2012.

T4. Anand Rajaraman and Jeffrey David Ullman, “Mining of Massive Datasets”, CUP, 2012

Essential Reading / Recommended Reading

R1. Bill Franks, “Taming the Big Data Tidal Wave: Finding Opportunities in Huge Data Streams with Advanced Analytics”, John Wiley& sons, 2012

R2. Glenn J. Myatt, “Making Sense of Data”, John Wiley & Sons, 2007

R3. Pete Warden, “Big Data Glossary”, O’Reilly, 2011

R4. Jiawei Han, Micheline Kamber “Data Mining Concepts and Techniques”, 2 nd Edition, Elsevier, Reprinted 2008.

R5. Da Ruan, Guoquing Chen, Etienne E.Kerre, Geert Wets, “Intelligent Data Mining”, Springer, 2007

R6. .Paul Zikopoulos, Dirkde Roos, Krishnan Parasuraman, Thomas Deutsch, James Giles , David Corrigan, “Harness the Power of Big Data The IBM Big Data Platform”, Tata McGraw Hill Publications, 2012

R7. Arshdeep Bahga, Vijay Madisetti, “Big Data Science & Analytics: A HandsOn Approach”,VPT, 2016

R8. Bart Baesens “Analytics in a Big Data World: The Essential Guide to Data Science and its Applications (WILEY Big Data Series)”, John Wiley & Sons,2014

Evaluation Pattern

As per University norms

CIA - 50 marks

ESE - 50 marks

HS621 - PROJECT MANAGEMENT AND FINANCE (2022 Batch)

Total Teaching Hours for Semester:45
No of Lecture Hours/Week:3
Max Marks:100
Credits:3

Course Objectives/Course Description

 

 

The objective of the course is to familiarize the students with the concepts of Project management, Project networking, Project equipment, Project quality, Project safety and Project finance.  

Learning Outcome

CO1: Apply the concept of project management in engineering field through project management life cycle

CO2: Analyze the quality management and project activity in engineering field through work breakdown structure

CO3: Analyze the fundamentals of project and network diagram in engineering and management domain through PDM techniques

CO4: Understand the fundamentals of project monitoring and control

CO5: Understand the meaning and approached to project evaluation and auditing

Unit-1
Teaching Hours:9
INTRODUCTION TO PROJECT MANAGEMENT
 

Introduction to Organizations, Principles of Management - its functions, Skills, Organization Structure, Financial Feasibility. Introduction to Project, Concept, Project Management, Project Life Cycle, Role of Project Manager - Functional Areas, Qualities and Responsibilities, Impact of Delays in Project Completions

Unit-2
Teaching Hours:9
PROJECT PLAN
 

Project management functions - Controlling, directing, project authority, responsibility, accountability, Scope of Planning, Market Analysis, Demand Forecasting, Product line analysis, Product Mix Analysis, New Product development, Plant location, plant capacity, Capital Budgeting, Time Value of Money, Cash flow importance, decision tree analysis

Unit-3
Teaching Hours:9
PROJECT SCHEDULING
 

Introduction, Estimation of Time, Project Network Analysis - CPM and PERT model, Gantt Chart, Resource Loading, Resource Leveling, Resource Allocation.  Estimating activity time and total program time, total PERT/CPM planning crash times, software‘s used in project management

Unit-4
Teaching Hours:9
PROJECT MONITORING AND CONTROLLING
 

Introduction, Purpose, Types of control, Designing and Monitoring Systems, reporting and types. Financial Control, Quality Control, Human Resource Control, Management Control System, Project Quality Management, Managing Risks

Unit-5
Teaching Hours:9
PROJECT EVALAUTION AND AUDITING
 

Types of Project Closures, Wrap-Up closure activities, Purpose of Project Evaluation - Advantages, factors considered for termination of project, Project Termination process, Project Final report. Budgeting, Cost estimation, cost escalation, life cycle cost. Project finance in the roads sector, Project finance (Build Own Operate (BOO) / Build Own Operate Transfer (BOOT) Projects / Build Operate and Transfer (BOT)

Text Books And Reference Books:

T1. PK. Joy “Total Project Management The Indian context”, Mac Milan India Ltd

T2. P C Tripathi and P N Reddy, “Principles of Management”, Tata McGraw-Hill Education, 2012.

T3. R. Panneerselvam and P. Senthil Kumar “Project Management” PHI learning India PVT Ltd

Essential Reading / Recommended Reading

R1. Bhavesh .M Patel, “Project Management” Vikas Publishing House PVT Ltd

R2. S. Choudhury “Project Management” Tata McGraw Hill Co

R3. Prasanna Chandra “Projects, Planning, analysis, selection financing, Implementation and Review” Tata McGraw Hill Co

R4. CCI P for D.F. Gray and Erik .w Carson “Project Management” Tata McGraw Hill Co

R5. P. Gopalakrishnan& VE. Ramamoorthy “Project Management” Macmillan India Ltd

R6. Erik W Larson and Clifford F Gray “Project Management – The Managerial Process” McGraw Hill/Irwin Series, Fifth Edition

Evaluation Pattern

CIA-50 marks

ESE-50 marks

MIIMBA634 - DATA ANALYSIS FOR MANAGERS (2022 Batch)

Total Teaching Hours for Semester:45
No of Lecture Hours/Week:4
Max Marks:100
Credits:4

Course Objectives/Course Description

 

 This is a common core course for 3 credit hours. It will discuss from both conceptual and application perspective, basic statistical methods widely used in business applications. The course gives an introduction to statistical methods needed in data analysis work related to applications in Economics, Finance, Marketing, Operations and Human Resources. Further it enables to conceptualize business problems in statistical terms and enhances understanding and application of fact and evidence-based decision-making process.

 

 

 This course attempts to enable the students to conceptualize business problems in statistical terms and to enhance their understanding and application of fact and evidence-based decision-making process.

Learning Outcome

CO1: Identify suitable data visualization technique for the given data set.

CO2: Apply an appropriate probability distribution technique for the given set of data.

CO3: Design sampling frame based on the context of decision-making.

CO4: Analyze statistical data to support fact-based decision making.

CO5: Develop models to understand the relationship between variables

Unit-1
Teaching Hours:9
DATA VISUALIZTION
 

Frequency distributions, histograms, stem-and-leaf displays, bar charts, pie charts, and scatter plots.

 

Data Preparation: Editing, coding, data entry, cross-tabulation, and graphical displays using MS Excel

Unit-1
Teaching Hours:9
DATA VISUALIZTION
 

Frequency distributions, histograms, stem-and-leaf displays, bar charts, pie charts, and scatter plots.

 

Data Preparation: Editing, coding, data entry, cross-tabulation, and graphical displays using MS Excel

Unit-1
Teaching Hours:9
DATA VISUALIZTION
 

Frequency distributions, histograms, stem-and-leaf displays, bar charts, pie charts, and scatter plots.

 

Data Preparation: Editing, coding, data entry, cross-tabulation, and graphical displays using MS Excel

Unit-1
Teaching Hours:9
DATA VISUALIZTION
 

Frequency distributions, histograms, stem-and-leaf displays, bar charts, pie charts, and scatter plots.

 

Data Preparation: Editing, coding, data entry, cross-tabulation, and graphical displays using MS Excel

Unit-1
Teaching Hours:9
DATA VISUALIZTION
 

Frequency distributions, histograms, stem-and-leaf displays, bar charts, pie charts, and scatter plots.

 

Data Preparation: Editing, coding, data entry, cross-tabulation, and graphical displays using MS Excel

Unit-1
Teaching Hours:9
DATA VISUALIZTION
 

Frequency distributions, histograms, stem-and-leaf displays, bar charts, pie charts, and scatter plots.

 

Data Preparation: Editing, coding, data entry, cross-tabulation, and graphical displays using MS Excel

Unit-1
Teaching Hours:9
DATA VISUALIZTION
 

Frequency distributions, histograms, stem-and-leaf displays, bar charts, pie charts, and scatter plots.

 

Data Preparation: Editing, coding, data entry, cross-tabulation, and graphical displays using MS Excel

Unit-2
Teaching Hours:9
Introduction to Probability and Probability Distributions
 

Probability: Event algebra*. Conditions of statistical dependence and independence, Types of probability, probabilities under conditions of statistical independence, conditional probability under statistical dependence, Bayes’ theorem and its applications.


Probability Distributions: Meaning of Probability Distribution, Random variables, Discrete and continuous random variables. Expected value, Use of expected value in decision making, Variance of a random variable. Binomial, Poisson, Uniform, Normal and Exponential distributions and their properties and applications

Unit-2
Teaching Hours:9
Introduction to Probability and Probability Distributions
 

Probability: Event algebra*. Conditions of statistical dependence and independence, Types of probability, probabilities under conditions of statistical independence, conditional probability under statistical dependence, Bayes’ theorem and its applications.


Probability Distributions: Meaning of Probability Distribution, Random variables, Discrete and continuous random variables. Expected value, Use of expected value in decision making, Variance of a random variable. Binomial, Poisson, Uniform, Normal and Exponential distributions and their properties and applications

Unit-2
Teaching Hours:9
Introduction to Probability and Probability Distributions
 

Probability: Event algebra*. Conditions of statistical dependence and independence, Types of probability, probabilities under conditions of statistical independence, conditional probability under statistical dependence, Bayes’ theorem and its applications.


Probability Distributions: Meaning of Probability Distribution, Random variables, Discrete and continuous random variables. Expected value, Use of expected value in decision making, Variance of a random variable. Binomial, Poisson, Uniform, Normal and Exponential distributions and their properties and applications

Unit-2
Teaching Hours:9
Introduction to Probability and Probability Distributions
 

Probability: Event algebra*. Conditions of statistical dependence and independence, Types of probability, probabilities under conditions of statistical independence, conditional probability under statistical dependence, Bayes’ theorem and its applications.


Probability Distributions: Meaning of Probability Distribution, Random variables, Discrete and continuous random variables. Expected value, Use of expected value in decision making, Variance of a random variable. Binomial, Poisson, Uniform, Normal and Exponential distributions and their properties and applications

Unit-2
Teaching Hours:9
Introduction to Probability and Probability Distributions
 

Probability: Event algebra*. Conditions of statistical dependence and independence, Types of probability, probabilities under conditions of statistical independence, conditional probability under statistical dependence, Bayes’ theorem and its applications.


Probability Distributions: Meaning of Probability Distribution, Random variables, Discrete and continuous random variables. Expected value, Use of expected value in decision making, Variance of a random variable. Binomial, Poisson, Uniform, Normal and Exponential distributions and their properties and applications

Unit-2
Teaching Hours:9
Introduction to Probability and Probability Distributions
 

Probability: Event algebra*. Conditions of statistical dependence and independence, Types of probability, probabilities under conditions of statistical independence, conditional probability under statistical dependence, Bayes’ theorem and its applications.


Probability Distributions: Meaning of Probability Distribution, Random variables, Discrete and continuous random variables. Expected value, Use of expected value in decision making, Variance of a random variable. Binomial, Poisson, Uniform, Normal and Exponential distributions and their properties and applications

Unit-2
Teaching Hours:9
Introduction to Probability and Probability Distributions
 

Probability: Event algebra*. Conditions of statistical dependence and independence, Types of probability, probabilities under conditions of statistical independence, conditional probability under statistical dependence, Bayes’ theorem and its applications.


Probability Distributions: Meaning of Probability Distribution, Random variables, Discrete and continuous random variables. Expected value, Use of expected value in decision making, Variance of a random variable. Binomial, Poisson, Uniform, Normal and Exponential distributions and their properties and applications

Unit-3
Teaching Hours:9
Sampling Methods Estimation and Testing Statistical Hypothesis
 

Sampling: Need, benefits and limitations. Probability and Non-probability sampling methods. Sampling distributions, Central Limit Theorem

Estimation - Point and Interval estimators of mean and proportion - Determining sample size using confidence interval approach.

Testing Hypothesis: Concepts basic to hypothesis, null and alternative hypothesis, testing procedure, level of significance, Types of errors. Measuring power of a hypothesis test. Testing of means and proportions for small and large samples, testing of difference between means and proportions for small and large samples

Unit-3
Teaching Hours:9
Sampling Methods Estimation and Testing Statistical Hypothesis
 

Sampling: Need, benefits and limitations. Probability and Non-probability sampling methods. Sampling distributions, Central Limit Theorem

Estimation - Point and Interval estimators of mean and proportion - Determining sample size using confidence interval approach.

Testing Hypothesis: Concepts basic to hypothesis, null and alternative hypothesis, testing procedure, level of significance, Types of errors. Measuring power of a hypothesis test. Testing of means and proportions for small and large samples, testing of difference between means and proportions for small and large samples

Unit-3
Teaching Hours:9
Sampling Methods Estimation and Testing Statistical Hypothesis
 

Sampling: Need, benefits and limitations. Probability and Non-probability sampling methods. Sampling distributions, Central Limit Theorem

Estimation - Point and Interval estimators of mean and proportion - Determining sample size using confidence interval approach.

Testing Hypothesis: Concepts basic to hypothesis, null and alternative hypothesis, testing procedure, level of significance, Types of errors. Measuring power of a hypothesis test. Testing of means and proportions for small and large samples, testing of difference between means and proportions for small and large samples

Unit-3
Teaching Hours:9
Sampling Methods Estimation and Testing Statistical Hypothesis
 

Sampling: Need, benefits and limitations. Probability and Non-probability sampling methods. Sampling distributions, Central Limit Theorem

Estimation - Point and Interval estimators of mean and proportion - Determining sample size using confidence interval approach.

Testing Hypothesis: Concepts basic to hypothesis, null and alternative hypothesis, testing procedure, level of significance, Types of errors. Measuring power of a hypothesis test. Testing of means and proportions for small and large samples, testing of difference between means and proportions for small and large samples

Unit-3
Teaching Hours:9
Sampling Methods Estimation and Testing Statistical Hypothesis
 

Sampling: Need, benefits and limitations. Probability and Non-probability sampling methods. Sampling distributions, Central Limit Theorem

Estimation - Point and Interval estimators of mean and proportion - Determining sample size using confidence interval approach.

Testing Hypothesis: Concepts basic to hypothesis, null and alternative hypothesis, testing procedure, level of significance, Types of errors. Measuring power of a hypothesis test. Testing of means and proportions for small and large samples, testing of difference between means and proportions for small and large samples

Unit-3
Teaching Hours:9
Sampling Methods Estimation and Testing Statistical Hypothesis
 

Sampling: Need, benefits and limitations. Probability and Non-probability sampling methods. Sampling distributions, Central Limit Theorem

Estimation - Point and Interval estimators of mean and proportion - Determining sample size using confidence interval approach.

Testing Hypothesis: Concepts basic to hypothesis, null and alternative hypothesis, testing procedure, level of significance, Types of errors. Measuring power of a hypothesis test. Testing of means and proportions for small and large samples, testing of difference between means and proportions for small and large samples

Unit-3
Teaching Hours:9
Sampling Methods Estimation and Testing Statistical Hypothesis
 

Sampling: Need, benefits and limitations. Probability and Non-probability sampling methods. Sampling distributions, Central Limit Theorem

Estimation - Point and Interval estimators of mean and proportion - Determining sample size using confidence interval approach.

Testing Hypothesis: Concepts basic to hypothesis, null and alternative hypothesis, testing procedure, level of significance, Types of errors. Measuring power of a hypothesis test. Testing of means and proportions for small and large samples, testing of difference between means and proportions for small and large samples

Unit-4
Teaching Hours:9
Chi-square Test and Analysis of Variance
 

Chi-Square test of goodness of fit and test of independence. ANOVA, Multiple comparison procedures.

Inference about population variance. Overview of Analysis of CRD, RBD, LSD, and factorial designs.

 

t-Tests, Chi-square test for Goodness of Fit and independence of attributes, ANOVA using MS Excel

Unit-4
Teaching Hours:9
Chi-square Test and Analysis of Variance
 

Chi-Square test of goodness of fit and test of independence. ANOVA, Multiple comparison procedures.

Inference about population variance. Overview of Analysis of CRD, RBD, LSD, and factorial designs.

 

t-Tests, Chi-square test for Goodness of Fit and independence of attributes, ANOVA using MS Excel

Unit-4
Teaching Hours:9
Chi-square Test and Analysis of Variance
 

Chi-Square test of goodness of fit and test of independence. ANOVA, Multiple comparison procedures.

Inference about population variance. Overview of Analysis of CRD, RBD, LSD, and factorial designs.

 

t-Tests, Chi-square test for Goodness of Fit and independence of attributes, ANOVA using MS Excel

Unit-4
Teaching Hours:9
Chi-square Test and Analysis of Variance
 

Chi-Square test of goodness of fit and test of independence. ANOVA, Multiple comparison procedures.

Inference about population variance. Overview of Analysis of CRD, RBD, LSD, and factorial designs.

 

t-Tests, Chi-square test for Goodness of Fit and independence of attributes, ANOVA using MS Excel

Unit-4
Teaching Hours:9
Chi-square Test and Analysis of Variance
 

Chi-Square test of goodness of fit and test of independence. ANOVA, Multiple comparison procedures.

Inference about population variance. Overview of Analysis of CRD, RBD, LSD, and factorial designs.

 

t-Tests, Chi-square test for Goodness of Fit and independence of attributes, ANOVA using MS Excel

Unit-4
Teaching Hours:9
Chi-square Test and Analysis of Variance
 

Chi-Square test of goodness of fit and test of independence. ANOVA, Multiple comparison procedures.

Inference about population variance. Overview of Analysis of CRD, RBD, LSD, and factorial designs.

 

t-Tests, Chi-square test for Goodness of Fit and independence of attributes, ANOVA using MS Excel

Unit-4
Teaching Hours:9
Chi-square Test and Analysis of Variance
 

Chi-Square test of goodness of fit and test of independence. ANOVA, Multiple comparison procedures.

Inference about population variance. Overview of Analysis of CRD, RBD, LSD, and factorial designs.

 

t-Tests, Chi-square test for Goodness of Fit and independence of attributes, ANOVA using MS Excel

Unit-5
Teaching Hours:9
Correlation and Regression
 

Concept of Correlation: Measure of Correlation & Interpretation. Simple Linear Regression - Form, fitting, prediction, hypothesis testing in linear regression. Residual analysis for validation of assumptions* - normality, homoscedasticity, outliers and influential observations.

 

Correlation and Regression using MS Exce

Unit-5
Teaching Hours:9
Correlation and Regression
 

Concept of Correlation: Measure of Correlation & Interpretation. Simple Linear Regression - Form, fitting, prediction, hypothesis testing in linear regression. Residual analysis for validation of assumptions* - normality, homoscedasticity, outliers and influential observations.

 

Correlation and Regression using MS Exce

Unit-5
Teaching Hours:9
Correlation and Regression
 

Concept of Correlation: Measure of Correlation & Interpretation. Simple Linear Regression - Form, fitting, prediction, hypothesis testing in linear regression. Residual analysis for validation of assumptions* - normality, homoscedasticity, outliers and influential observations.

 

Correlation and Regression using MS Exce

Unit-5
Teaching Hours:9
Correlation and Regression
 

Concept of Correlation: Measure of Correlation & Interpretation. Simple Linear Regression - Form, fitting, prediction, hypothesis testing in linear regression. Residual analysis for validation of assumptions* - normality, homoscedasticity, outliers and influential observations.

 

Correlation and Regression using MS Exce

Unit-5
Teaching Hours:9
Correlation and Regression
 

Concept of Correlation: Measure of Correlation & Interpretation. Simple Linear Regression - Form, fitting, prediction, hypothesis testing in linear regression. Residual analysis for validation of assumptions* - normality, homoscedasticity, outliers and influential observations.

 

Correlation and Regression using MS Exce

Unit-5
Teaching Hours:9
Correlation and Regression
 

Concept of Correlation: Measure of Correlation & Interpretation. Simple Linear Regression - Form, fitting, prediction, hypothesis testing in linear regression. Residual analysis for validation of assumptions* - normality, homoscedasticity, outliers and influential observations.

 

Correlation and Regression using MS Exce

Unit-5
Teaching Hours:9
Correlation and Regression
 

Concept of Correlation: Measure of Correlation & Interpretation. Simple Linear Regression - Form, fitting, prediction, hypothesis testing in linear regression. Residual analysis for validation of assumptions* - normality, homoscedasticity, outliers and influential observations.

 

Correlation and Regression using MS Exce

Text Books And Reference Books:

T1. Anderson, D.R., Sweeny, D.J., Williams, T.A., Camm, J.D., Cochran, J.J. (2017). Statistics for business & economics, 13thEdition. Boston: Cengage Learning.

 

Essential Reading / Recommended Reading

R1. Levin, R.I., Rubin, D. S., Rastogi S., Siddiqui, M.H. (2013).Statistics for management. New Delhi: Prentice Hall India Publications.

R2. Doane, D. P., & Seward, L. W. (2017). Applied statistics in business and economics. New York, NY: McGraw-Hill.

 

R3. McClave, J. T., Benson, P. G., Sincich, T., & Sincich, T. (2017). Statistics for business and economics. Pearson.

Evaluation Pattern

CIA1- 20

MSE- 50 

CIA3- 20

CEOE761E01 - SUSTAINABLE AND GREEN TECHNOLOGY (2021 Batch)

Total Teaching Hours for Semester:45
No of Lecture Hours/Week:3
Max Marks:100
Credits:3

Course Objectives/Course Description

 

This course will  equip students with the knowledge and skills needed to address sustainability challenges through the application of green technologies.

Learning Outcome

CO1: To demonstrate a clear understanding and application of sustainability principles to develop and implement green technologies.

CO2: To apply concepts of mass conservation and closed energy cycles to analyze and design sustainable energy systems

CO3: To apply principles of mass and energy transport systems to analyze and solve problems, integrating economic concepts To apply principles of mass and energy transport systems to analyze and solve problems, integrating economic concepts

CO4: To analyze and optimize resource allocation strategies to achieve sustainability goals

CO5: Interpret the principles of Life Cycle Analysis (LCA) by exploring theoretical foundations, practical applications, and real-world examples

Unit-1
Teaching Hours:9
Introduction
 

Introduction to definitions and concepts underlying sustainability, State of the world using measures of sustainability

Unit-1
Teaching Hours:9
Introduction
 

Introduction to definitions and concepts underlying sustainability, State of the world using measures of sustainability

Unit-1
Teaching Hours:9
Introduction
 

Introduction to definitions and concepts underlying sustainability, State of the world using measures of sustainability

Unit-1
Teaching Hours:9
Introduction
 

Introduction to definitions and concepts underlying sustainability, State of the world using measures of sustainability

Unit-1
Teaching Hours:9
Introduction
 

Introduction to definitions and concepts underlying sustainability, State of the world using measures of sustainability

Unit-1
Teaching Hours:9
Introduction
 

Introduction to definitions and concepts underlying sustainability, State of the world using measures of sustainability

Unit-1
Teaching Hours:9
Introduction
 

Introduction to definitions and concepts underlying sustainability, State of the world using measures of sustainability

Unit-2
Teaching Hours:9
Conservation and Energy Balance
 

Mass conservation and closed energy cycles, Green Design and Green Manufacturing Concepts. Energy Balance – The case of electric batteries and fuel cells

Unit-2
Teaching Hours:9
Conservation and Energy Balance
 

Mass conservation and closed energy cycles, Green Design and Green Manufacturing Concepts. Energy Balance – The case of electric batteries and fuel cells

Unit-2
Teaching Hours:9
Conservation and Energy Balance
 

Mass conservation and closed energy cycles, Green Design and Green Manufacturing Concepts. Energy Balance – The case of electric batteries and fuel cells

Unit-2
Teaching Hours:9
Conservation and Energy Balance
 

Mass conservation and closed energy cycles, Green Design and Green Manufacturing Concepts. Energy Balance – The case of electric batteries and fuel cells

Unit-2
Teaching Hours:9
Conservation and Energy Balance
 

Mass conservation and closed energy cycles, Green Design and Green Manufacturing Concepts. Energy Balance – The case of electric batteries and fuel cells

Unit-2
Teaching Hours:9
Conservation and Energy Balance
 

Mass conservation and closed energy cycles, Green Design and Green Manufacturing Concepts. Energy Balance – The case of electric batteries and fuel cells

Unit-2
Teaching Hours:9
Conservation and Energy Balance
 

Mass conservation and closed energy cycles, Green Design and Green Manufacturing Concepts. Energy Balance – The case of electric batteries and fuel cells

Unit-3
Teaching Hours:9
Transport Systems
 

Mass and Energy Transport Systems, Economic Concepts: Net Present Value (NPV) calculations

Unit-3
Teaching Hours:9
Transport Systems
 

Mass and Energy Transport Systems, Economic Concepts: Net Present Value (NPV) calculations

Unit-3
Teaching Hours:9
Transport Systems
 

Mass and Energy Transport Systems, Economic Concepts: Net Present Value (NPV) calculations

Unit-3
Teaching Hours:9
Transport Systems
 

Mass and Energy Transport Systems, Economic Concepts: Net Present Value (NPV) calculations

Unit-3
Teaching Hours:9
Transport Systems
 

Mass and Energy Transport Systems, Economic Concepts: Net Present Value (NPV) calculations

Unit-3
Teaching Hours:9
Transport Systems
 

Mass and Energy Transport Systems, Economic Concepts: Net Present Value (NPV) calculations

Unit-3
Teaching Hours:9
Transport Systems
 

Mass and Energy Transport Systems, Economic Concepts: Net Present Value (NPV) calculations

Unit-4
Teaching Hours:9
Optimization
 

Optimization Problems and resource allocation in sustainability, Value Stream Mapping (VSM) – Theory and practice

Unit-4
Teaching Hours:9
Optimization
 

Optimization Problems and resource allocation in sustainability, Value Stream Mapping (VSM) – Theory and practice

Unit-4
Teaching Hours:9
Optimization
 

Optimization Problems and resource allocation in sustainability, Value Stream Mapping (VSM) – Theory and practice

Unit-4
Teaching Hours:9
Optimization
 

Optimization Problems and resource allocation in sustainability, Value Stream Mapping (VSM) – Theory and practice

Unit-4
Teaching Hours:9
Optimization
 

Optimization Problems and resource allocation in sustainability, Value Stream Mapping (VSM) – Theory and practice

Unit-4
Teaching Hours:9
Optimization
 

Optimization Problems and resource allocation in sustainability, Value Stream Mapping (VSM) – Theory and practice

Unit-4
Teaching Hours:9
Optimization
 

Optimization Problems and resource allocation in sustainability, Value Stream Mapping (VSM) – Theory and practice

Unit-5
Teaching Hours:9
Life Cycle Analysis
 

Life Cycle Analysis (LCA): Theory – Applications – Examples

Unit-5
Teaching Hours:9
Life Cycle Analysis
 

Life Cycle Analysis (LCA): Theory – Applications – Examples

Unit-5
Teaching Hours:9
Life Cycle Analysis
 

Life Cycle Analysis (LCA): Theory – Applications – Examples

Unit-5
Teaching Hours:9
Life Cycle Analysis
 

Life Cycle Analysis (LCA): Theory – Applications – Examples

Unit-5
Teaching Hours:9
Life Cycle Analysis
 

Life Cycle Analysis (LCA): Theory – Applications – Examples

Unit-5
Teaching Hours:9
Life Cycle Analysis
 

Life Cycle Analysis (LCA): Theory – Applications – Examples

Unit-5
Teaching Hours:9
Life Cycle Analysis
 

Life Cycle Analysis (LCA): Theory – Applications – Examples

Text Books And Reference Books:

T1.  Dresner, Simon. (2008) The Principles of Sustainability 2nd edition. Styluspub Publishing Inc., Sterling, Virgina.

 T2. Epstein, Marc (2008) Making Sustainability Work. Berrett-Koehler, Publishers, San Francisco, California.

Essential Reading / Recommended Reading

R1. AME, Association for Manufacturing Excellence (2007) Green Manufacturing: Case Studies in Lean Manufacturing and Sustainability. Productivity Press, Inc.

R2. Doppelt, Robert. (2010) The Power of Sustainability Thinking. Stylus Publishers, Sterling, Virginia. 

R3. Dornfeld, David (2010) Green Manufacturing: Fundamentals and Applications. Springer. Berlin, Germany.

R4. Epstein, Matt and John Elkington (2008) Making Sustainability Work: Best Practices in Managing and Measuring Corporate Social, Environmental, and Economic Impacts. Berrett_Koehler Publishers, San Francisco, California.

R5. Hansen, J. (2009) Storms of My Grandchildren: The Truth About the Coming Climate Catastrophe and Our Last Chance to Save Humanity. Bloomsbury Press.

R6. Hardisty, P.E. (2010) Environmental and Economic Sustainability. CRC Press.

R7.Hitchcock, Darcy and Marsha Willard. (2008) The Step-By-Step Guide to Sustainability Planning. Stylus Publishing, Sterling, Virginia.

R8. ISO 14040 “Environment Management – Life Cycle Assessment – Principles and Framework” Geneva, Switzerland (2007)

R9. Krosinsky, Cary and Nick Robing (2008) Sustainability Investing. Stylus Publishing, Sterling, Virginia.

R10.LEED: “Building Ratings System for New Construction and Major Renovations” Version 3.1: U.S. Green Building Council 2009.

R11.Matthew, R.A. (2010) Global Environmental Change and Human Security. MIT Press.

R12. McKenny, M., Schock, R. and Yonavjak, L. (2007) Environmental Science: Systems Solutions 4th edition Jones and Bartlett Publishers.

 

R13. Pierce, J. and G. Randeis (2010) Contemporary Bioethics: A Reader with Cases. Oxford University Press.

Evaluation Pattern

Sl No.

Evaluation Component

Module

Duration

(min)

Nature of Component

Validation

1

CIA I

Quiz, assignment, & test

------

Closed Book/ Open book

Written test

2

CIA II

MSE

120

Closed Book

MSE

3

CIA  III

Seminar/assignment, Test

-----

Closed/Open Book

Seminar and test

4

Semester Exam

ESE

180

Closed Book

ESE

CEOE761E02 - AIR POLLUTION AND CONTROL (2021 Batch)

Total Teaching Hours for Semester:45
No of Lecture Hours/Week:3
Max Marks:100
Credits:03

Course Objectives/Course Description

 

Objective of this is to know the sources, characteristics and effects of air and noise pollution and the methods of controlling the same. The student is expected to know about source inventory and control mechanism like.

  1. The atmosphere and its components
  2. How air pollutants are categorized
  3. The sources of air pollution
  4. The difference between criteria pollutants and hazardous air pollutants
  5. How pollution affects health and welfare

Learning Outcome

CO1: Identify the major sources and sinks of air pollutants.

CO2: Understand the key chemical transformations of air pollution.

CO3: Relate air pollution regulation and its scientific basis.

CO4: Describe engineering solutions to air pollution problems.

CO5: Study the burning environmental issues

Unit-1
Teaching Hours:9
EFFECTS OF AIR POLLUTION
 

On Human Health, Animals, Plants and Materials – Major Environmental Air Pollution Episodes – London Smog, Los Angeles Smog & Bhopal Gas Tragedy.

Unit-1
Teaching Hours:9
INTRODUCTION
 

Definition – Classification and Characterization of Air Pollutants, Emission Sources, Behavior and Fate of air Pollutants, Chemical Reactions in the Atmosphere, Photo-chemical Smog, Coal-induced smog, Air Pollution Inventories.

Unit-1
Teaching Hours:9
EFFECTS OF AIR POLLUTION
 

On Human Health, Animals, Plants and Materials – Major Environmental Air Pollution Episodes – London Smog, Los Angeles Smog & Bhopal Gas Tragedy.

Unit-1
Teaching Hours:9
INTRODUCTION
 

Definition – Classification and Characterization of Air Pollutants, Emission Sources, Behavior and Fate of air Pollutants, Chemical Reactions in the Atmosphere, Photo-chemical Smog, Coal-induced smog, Air Pollution Inventories.

Unit-1
Teaching Hours:9
EFFECTS OF AIR POLLUTION
 

On Human Health, Animals, Plants and Materials – Major Environmental Air Pollution Episodes – London Smog, Los Angeles Smog & Bhopal Gas Tragedy.

Unit-1
Teaching Hours:9
INTRODUCTION
 

Definition – Classification and Characterization of Air Pollutants, Emission Sources, Behavior and Fate of air Pollutants, Chemical Reactions in the Atmosphere, Photo-chemical Smog, Coal-induced smog, Air Pollution Inventories.

Unit-1
Teaching Hours:9
EFFECTS OF AIR POLLUTION
 

On Human Health, Animals, Plants and Materials – Major Environmental Air Pollution Episodes – London Smog, Los Angeles Smog & Bhopal Gas Tragedy.

Unit-1
Teaching Hours:9
INTRODUCTION
 

Definition – Classification and Characterization of Air Pollutants, Emission Sources, Behavior and Fate of air Pollutants, Chemical Reactions in the Atmosphere, Photo-chemical Smog, Coal-induced smog, Air Pollution Inventories.

Unit-1
Teaching Hours:9
EFFECTS OF AIR POLLUTION
 

On Human Health, Animals, Plants and Materials – Major Environmental Air Pollution Episodes – London Smog, Los Angeles Smog & Bhopal Gas Tragedy.

Unit-1
Teaching Hours:9
INTRODUCTION
 

Definition – Classification and Characterization of Air Pollutants, Emission Sources, Behavior and Fate of air Pollutants, Chemical Reactions in the Atmosphere, Photo-chemical Smog, Coal-induced smog, Air Pollution Inventories.

Unit-1
Teaching Hours:9
EFFECTS OF AIR POLLUTION
 

On Human Health, Animals, Plants and Materials – Major Environmental Air Pollution Episodes – London Smog, Los Angeles Smog & Bhopal Gas Tragedy.

Unit-1
Teaching Hours:9
INTRODUCTION
 

Definition – Classification and Characterization of Air Pollutants, Emission Sources, Behavior and Fate of air Pollutants, Chemical Reactions in the Atmosphere, Photo-chemical Smog, Coal-induced smog, Air Pollution Inventories.

Unit-1
Teaching Hours:9
EFFECTS OF AIR POLLUTION
 

On Human Health, Animals, Plants and Materials – Major Environmental Air Pollution Episodes – London Smog, Los Angeles Smog & Bhopal Gas Tragedy.

Unit-1
Teaching Hours:9
INTRODUCTION
 

Definition – Classification and Characterization of Air Pollutants, Emission Sources, Behavior and Fate of air Pollutants, Chemical Reactions in the Atmosphere, Photo-chemical Smog, Coal-induced smog, Air Pollution Inventories.

Unit-2
Teaching Hours:9
METEOROLOGY
 

Introduction – Meteorological Variables, Primary and Secondary Lapse Rate, Inversions, Stability Conditions, Windrose, General Characteristics of Stack Plumes, Meterological Models. Industrial Plant Location and Planning

Unit-2
Teaching Hours:9
METEOROLOGY
 

Introduction – Meteorological Variables, Primary and Secondary Lapse Rate, Inversions, Stability Conditions, Windrose, General Characteristics of Stack Plumes, Meterological Models. Industrial Plant Location and Planning

Unit-2
Teaching Hours:9
METEOROLOGY
 

Introduction – Meteorological Variables, Primary and Secondary Lapse Rate, Inversions, Stability Conditions, Windrose, General Characteristics of Stack Plumes, Meterological Models. Industrial Plant Location and Planning

Unit-2
Teaching Hours:9
METEOROLOGY
 

Introduction – Meteorological Variables, Primary and Secondary Lapse Rate, Inversions, Stability Conditions, Windrose, General Characteristics of Stack Plumes, Meterological Models. Industrial Plant Location and Planning

Unit-2
Teaching Hours:9
METEOROLOGY
 

Introduction – Meteorological Variables, Primary and Secondary Lapse Rate, Inversions, Stability Conditions, Windrose, General Characteristics of Stack Plumes, Meterological Models. Industrial Plant Location and Planning

Unit-2
Teaching Hours:9
METEOROLOGY
 

Introduction – Meteorological Variables, Primary and Secondary Lapse Rate, Inversions, Stability Conditions, Windrose, General Characteristics of Stack Plumes, Meterological Models. Industrial Plant Location and Planning

Unit-2
Teaching Hours:9
METEOROLOGY
 

Introduction – Meteorological Variables, Primary and Secondary Lapse Rate, Inversions, Stability Conditions, Windrose, General Characteristics of Stack Plumes, Meterological Models. Industrial Plant Location and Planning

Unit-3
Teaching Hours:9
SAMPLING, ANALYSIS AND CONTROL
 

Sampling and Measurement of Gaseous and Particulate matter, Stack Sampling, Analysis of Air Pollutants, Smoke and Smoke Measurement, Air Pollution Control Methods– Particulate, Emission Control, Gravitational Settling Chambers, Cyclone Separators, Fabric Filters, Electrostatic Precipitators, Wet Scrubbers, Selection of a Particulate Collecting Equipment, Control of Gaseous Emissions, Adsorption by Liquids, Adsorption by Solids, Combustion Odours and their control.

Unit-3
Teaching Hours:9
SAMPLING, ANALYSIS AND CONTROL
 

Sampling and Measurement of Gaseous and Particulate matter, Stack Sampling, Analysis of Air Pollutants, Smoke and Smoke Measurement, Air Pollution Control Methods– Particulate, Emission Control, Gravitational Settling Chambers, Cyclone Separators, Fabric Filters, Electrostatic Precipitators, Wet Scrubbers, Selection of a Particulate Collecting Equipment, Control of Gaseous Emissions, Adsorption by Liquids, Adsorption by Solids, Combustion Odours and their control.

Unit-3
Teaching Hours:9
SAMPLING, ANALYSIS AND CONTROL
 

Sampling and Measurement of Gaseous and Particulate matter, Stack Sampling, Analysis of Air Pollutants, Smoke and Smoke Measurement, Air Pollution Control Methods– Particulate, Emission Control, Gravitational Settling Chambers, Cyclone Separators, Fabric Filters, Electrostatic Precipitators, Wet Scrubbers, Selection of a Particulate Collecting Equipment, Control of Gaseous Emissions, Adsorption by Liquids, Adsorption by Solids, Combustion Odours and their control.

Unit-3
Teaching Hours:9
SAMPLING, ANALYSIS AND CONTROL
 

Sampling and Measurement of Gaseous and Particulate matter, Stack Sampling, Analysis of Air Pollutants, Smoke and Smoke Measurement, Air Pollution Control Methods– Particulate, Emission Control, Gravitational Settling Chambers, Cyclone Separators, Fabric Filters, Electrostatic Precipitators, Wet Scrubbers, Selection of a Particulate Collecting Equipment, Control of Gaseous Emissions, Adsorption by Liquids, Adsorption by Solids, Combustion Odours and their control.

Unit-3
Teaching Hours:9
SAMPLING, ANALYSIS AND CONTROL
 

Sampling and Measurement of Gaseous and Particulate matter, Stack Sampling, Analysis of Air Pollutants, Smoke and Smoke Measurement, Air Pollution Control Methods– Particulate, Emission Control, Gravitational Settling Chambers, Cyclone Separators, Fabric Filters, Electrostatic Precipitators, Wet Scrubbers, Selection of a Particulate Collecting Equipment, Control of Gaseous Emissions, Adsorption by Liquids, Adsorption by Solids, Combustion Odours and their control.

Unit-3
Teaching Hours:9
SAMPLING, ANALYSIS AND CONTROL
 

Sampling and Measurement of Gaseous and Particulate matter, Stack Sampling, Analysis of Air Pollutants, Smoke and Smoke Measurement, Air Pollution Control Methods– Particulate, Emission Control, Gravitational Settling Chambers, Cyclone Separators, Fabric Filters, Electrostatic Precipitators, Wet Scrubbers, Selection of a Particulate Collecting Equipment, Control of Gaseous Emissions, Adsorption by Liquids, Adsorption by Solids, Combustion Odours and their control.

Unit-3
Teaching Hours:9
SAMPLING, ANALYSIS AND CONTROL
 

Sampling and Measurement of Gaseous and Particulate matter, Stack Sampling, Analysis of Air Pollutants, Smoke and Smoke Measurement, Air Pollution Control Methods– Particulate, Emission Control, Gravitational Settling Chambers, Cyclone Separators, Fabric Filters, Electrostatic Precipitators, Wet Scrubbers, Selection of a Particulate Collecting Equipment, Control of Gaseous Emissions, Adsorption by Liquids, Adsorption by Solids, Combustion Odours and their control.

Unit-4
Teaching Hours:9
AIR POLLUTION DUE TO AUTOMOBILES
 

Air Pollution due to Gasoline Driven and Diesel Driven Engines, Effects, Direct and Indirect Methods of control

Unit-4
Teaching Hours:9
STANDARDS AND LEGISLATION
 

Air Quality and Emission Standards– Legislation and Regulation, Air Pollution Index.

Unit-4
Teaching Hours:9
AIR POLLUTION DUE TO AUTOMOBILES
 

Air Pollution due to Gasoline Driven and Diesel Driven Engines, Effects, Direct and Indirect Methods of control

Unit-4
Teaching Hours:9
STANDARDS AND LEGISLATION
 

Air Quality and Emission Standards– Legislation and Regulation, Air Pollution Index.

Unit-4
Teaching Hours:9
AIR POLLUTION DUE TO AUTOMOBILES
 

Air Pollution due to Gasoline Driven and Diesel Driven Engines, Effects, Direct and Indirect Methods of control

Unit-4
Teaching Hours:9
STANDARDS AND LEGISLATION
 

Air Quality and Emission Standards– Legislation and Regulation, Air Pollution Index.

Unit-4
Teaching Hours:9
AIR POLLUTION DUE TO AUTOMOBILES
 

Air Pollution due to Gasoline Driven and Diesel Driven Engines, Effects, Direct and Indirect Methods of control

Unit-4
Teaching Hours:9
STANDARDS AND LEGISLATION
 

Air Quality and Emission Standards– Legislation and Regulation, Air Pollution Index.

Unit-4
Teaching Hours:9
AIR POLLUTION DUE TO AUTOMOBILES
 

Air Pollution due to Gasoline Driven and Diesel Driven Engines, Effects, Direct and Indirect Methods of control

Unit-4
Teaching Hours:9
STANDARDS AND LEGISLATION
 

Air Quality and Emission Standards– Legislation and Regulation, Air Pollution Index.

Unit-4
Teaching Hours:9
AIR POLLUTION DUE TO AUTOMOBILES
 

Air Pollution due to Gasoline Driven and Diesel Driven Engines, Effects, Direct and Indirect Methods of control

Unit-4
Teaching Hours:9
STANDARDS AND LEGISLATION
 

Air Quality and Emission Standards– Legislation and Regulation, Air Pollution Index.

Unit-4
Teaching Hours:9
AIR POLLUTION DUE TO AUTOMOBILES
 

Air Pollution due to Gasoline Driven and Diesel Driven Engines, Effects, Direct and Indirect Methods of control

Unit-4
Teaching Hours:9
STANDARDS AND LEGISLATION
 

Air Quality and Emission Standards– Legislation and Regulation, Air Pollution Index.

Unit-5
Teaching Hours:9
BURNING ENVIRONMENTAL ISSUES:
 

1.Acid Rain

2.Global Warming

3.Ozone Depletion in Stratosphere

4.Indoor Air Pollution

Unit-5
Teaching Hours:9
BURNING ENVIRONMENTAL ISSUES:
 

1.Acid Rain

2.Global Warming

3.Ozone Depletion in Stratosphere

4.Indoor Air Pollution

Unit-5
Teaching Hours:9
BURNING ENVIRONMENTAL ISSUES:
 

1.Acid Rain

2.Global Warming

3.Ozone Depletion in Stratosphere

4.Indoor Air Pollution

Unit-5
Teaching Hours:9
BURNING ENVIRONMENTAL ISSUES:
 

1.Acid Rain

2.Global Warming

3.Ozone Depletion in Stratosphere

4.Indoor Air Pollution

Unit-5
Teaching Hours:9
BURNING ENVIRONMENTAL ISSUES:
 

1.Acid Rain

2.Global Warming

3.Ozone Depletion in Stratosphere

4.Indoor Air Pollution

Unit-5
Teaching Hours:9
BURNING ENVIRONMENTAL ISSUES:
 

1.Acid Rain

2.Global Warming

3.Ozone Depletion in Stratosphere

4.Indoor Air Pollution

Unit-5
Teaching Hours:9
BURNING ENVIRONMENTAL ISSUES:
 

1.Acid Rain

2.Global Warming

3.Ozone Depletion in Stratosphere

4.Indoor Air Pollution

Text Books And Reference Books:

T1“Air Pollution – Sampling and Analysis – APHA”

T2. “Environmental Engineering and Management” Dhamija S K and kataria S K andSons, Delhi

T3. De AK, “Engineers Chemistry”, New Age Publication, Delhi

T4. Deswal and SS Deswal; “Environmental Engineering”, Dhanpat Rai andCompany (P) Ltd., Delhi

Essential Reading / Recommended Reading

R1Harper and Row “Air Pollution –Its origin and control”, Wark. K.and Warner. F. publishers, New York

R2. Henry C. Perkins “Air Pollution”, McGraw Hill Ltd.

R3. Kendeigh SC, “Ecology”, Prentice Hall of India, Delhi

R4. Odum EP, “Fundamentals of Ecology”, Amarind publication Co., Delhi

Evaluation Pattern

Sl No.

Evaluation Component

Module

Duration

(min)

Nature of Component

Validation

1

CIA I

Quiz, assignment, & test

------

Closed Book/ Open book

Written test

2

CIA II

MSE

120

Closed Book

MSE

3

CIA  III

Seminar/assignment, Test

-----

Closed/Open Book

Seminar and test

4

Semester Exam

ESE

180

Closed Book

ESE

EC781 - INTERNSHIP (2021 Batch)

Total Teaching Hours for Semester:60
No of Lecture Hours/Week:4
Max Marks:50
Credits:2

Course Objectives/Course Description

 

This course aims to expose the students to physical applications of engineering in their related domains. This course enables the students to get a first-hand exposure regarding the working of the industry and also help them to understand the work ethics and principles, time management and project management.

Learning Outcome

CO1: Design solutions to real time complex engineering problems using the concepts of Electronics & Communication engineering through independent study

CO2: Demonstrate teamwork and leadership skills with professional ethics

CO3: Prepare an internship report in the prescribed format and demonstrate oral communication through presentation of the internship work

Unit-1
Teaching Hours:60
Internship
 

Internship

Unit-1
Teaching Hours:60
Internship
 

Internship

Text Books And Reference Books:

NA

Essential Reading / Recommended Reading

NA

Evaluation Pattern

As per university norms

EC782 - PROJECT WORK PHASE I (2021 Batch)

Total Teaching Hours for Semester:360
No of Lecture Hours/Week:24
Max Marks:100
Credits:12

Course Objectives/Course Description

 

This course provides the students an opportunity to independently design, develop and conduct investigation of real world societal problems pertaining to the knowledge and application of electronics and communication engineering. This course also aims at building the team working skills in addition to making them work as an individual team member and also provides the students the skills of project management including the finance  aspects. 

Learning Outcome

CO1: Design engineering solutions to complex real world problems using research literature for societal applications through self-study

CO2: Use appropriate hardware and software depending on the nature of the project with an understanding of their limitations

CO3: Demonstrate teamwork and leadership skills with professional ethics and prepare a project report in the prescribed format

CO4: Understand the impact of the developed projects on environmental factors

CO5: Demonstrate project management skills including handling the finances in doing projects for given real world societal problems

Unit-1
Teaching Hours:360
Project work Phase I
 

Project work Phase I

Unit-1
Teaching Hours:360
Project work Phase I
 

Project work Phase I

Text Books And Reference Books:

NA

Essential Reading / Recommended Reading

NA

Evaluation Pattern

CIA 100 marks

ESE 100 marks

ECHO741CSP - ADVANCED CRYPTOGRAPHY AND BLOCKCHAIN (2021 Batch)

Total Teaching Hours for Semester:45
No of Lecture Hours/Week:3
Max Marks:100
Credits:3

Course Objectives/Course Description

 

To explore the fundamentals of blockchain technology, including blocks, chains, and network security, and identify and encounter basic threats.

Learning Outcome

CO1: To describe the purpose of hash functions and public key cryptography in blockchain security.

Unit-1
Teaching Hours:9
Minimum polynomial and Construction of fields
 

Minimum polynomial, Construction of fields with the help of an irreducible polynomial. Splitting field of a polynomial, Separable polynomial and Separable extensions. Construction of finite fields and their structure. Enumeration of irreducible polynomials over finite fields,  Cyclotomic extensions, Geometric constructions and Galois theory of Equations (Statement only of Abel Ruffini), Solving Cubic and Bi-quadratic polynomials using radicals.

Unit-2
Teaching Hours:9
Cryptosystems and signatures
 

Elliptic Curve Cryptosystem (ECC), Digital Signature Standard (DSS), Selection of other signature schemes, Overview of discrete logarithm algorithms, Ethical aspects of public-key cryptosystems and signatures

Unit-3
Teaching Hours:9
Key management
 

Introduction, Key transport based on symmetric encryption, Key agreement based on symmetric techniques, Key transport based on public-key encryption, Key agreement based on asymmetric techniques, Secret sharing, Key Management Techniques, Techniques for distributing public keys, Techniques for controlling key usage, Key management involving multiple domains.

Unit-4
Teaching Hours:9
Applying AI & Blockchain
 

Applying AI & Blockchain: Healthcare, Supply chain, Financial Services, Information Security, Document management, AI & Blockchain Driven Databases - Centralized versus distributed data, Big data for AI analysis, Data Management in a DAO, Emerging patterns for Database Solutions

Unit-5
Teaching Hours:9
Project presentation
 

Project presentation- Futures smart contract: Blockchain oracles- Web3j: Setting up the Web3J- Installing web3j- Wallet creation, Java client: The wrapper generator- Initializing web3j- Setting up Ethereum accounts- Deploying the contract

Text Books And Reference Books:
  1. Ganesh Prasad Kumble, “Practical Artificial Intelligence and Blockchain”, First Edition. Packt Publishing Lts, July 2020.

  2. Imran Bashir, “Mastering Blockchain: Distributed Ledger Technology, decentralization, and smart contracts explained”, 2nd Edition, Packt Publishing Ltd, March 2018. 

  3. William Stallings, “Cryptography and Network Security Principles and Practices”, Pearson/PHI,2017.

 

Essential Reading / Recommended Reading
  1. Andreas M. Antonopoulos, “Mastering Bitcoin: Unlocking Digital Cryptocurrencies”, O’Reilly Media Inc, 2015

  2. Charles P. Pfleeger, Shari Lawrence Pfleeger – Security in computing, Prentice Hall of India,2015.

 

Evaluation Pattern

CIA-50 marks

ESE-50 marks

ELC731P - INTERNET OF THINGS (2021 Batch)

Total Teaching Hours for Semester:75
No of Lecture Hours/Week:5
Max Marks:100
Credits:4

Course Objectives/Course Description

 

 This course aims to introduce the concepts and protocols related to Internet of Things, get an idea where the application areas are available for the Internet of Things to be applied, to understand the middleware for Internet of Things; To understand the concepts of Web of Things, the concepts of Cloud of Things with emphasis on Mobile cloud computing and where the market connected to the network lies.

Learning Outcome

CO1: Explain the fundamental building blocks of an IoT environment from a logical and physical perspective.

CO2: Experiment with Arduino and Raspberry Pi to choose the appropriate hardware for different IoT projects

CO3: Summarize IoT protocols in Application and Network layers by outlining their advantages and disadvantages

CO4: Develop IoT solutions using Arduino and Raspberry Pi to solve real life problems

CO5: Survey successful IoT products and solutions to analyze their architecture and technologies

Unit-1
Teaching Hours:9
INTRODUCTION AND BACKGROUND
 

Definition and Characteristics of IoT, Physical Design of IoT: Things in IoT, IoT Protocols, Logical Design of IoT: IoT functional Blocks, IoT Communication Blocks, IoT Communication APIs, IoT Enablish Technologies: WSN, Cloud Computing, Big Data Analysis, Communication Protocols, Embedded Systems.

Unit-2
Teaching Hours:9
IOT HARDWARE, DEVICES AND PLATFORMS
 

Basics of Arduino: The Arduino Hardware, The Arduino IDE, Basic Arduino Programming, Basics of Raspberry pi: Introduction to Raspberry Pi, Programming with Raspberry Pi, CDAC IoT devices: Ubimote, Wi-Fi mote, BLE mote, WINGZ gateway,Introduction to IoT Platforms, IoT Sensors and actuators

Unit-3
Teaching Hours:9
IOT ARCHITECTURE AND PROTOCOLS
 

IoT Architecture: Web of Things versus Internet of Things – Two Pillars of the Web – Unified Multitier WoT Architecture, Cloud Providers and Systems,The Cloud of Things Architecture. IoT Protocols: Application Protocols, Service Discovery Protocols, Infrastructure Protocols.

Unit-4
Teaching Hours:9
IOT PROGRAMMING
 

Arduino Programming: Serial Communications, Getting input from sensors, Visual, Physical and Audio Outputs, Remotely Controlling External Devices, Wireless Communication. Programming with Raspberry Pi: Basics of Python Programming, Python packages of IoT, IoT Programming with CDAC IoT devices

Unit-5
Teaching Hours:9
DOMAIN SPECIFIC IOT
 

Home automation, Smart cities,  Smart Environment, IoT in Energy, Logistics, Agriculture, Industry and Health & Life style secors. Case Studies: A Case study of Internet of Things Using Wireless Sensor Networks and Smartphones, Security Analysis of Internet-of-Things: A Case Study of August Smart Lock, OpenIoT platform

Text Books And Reference Books:

T1. Vijay Madisetti and Arshdeep Bahga, “Internet of Things (A Hands-on-Approach)”, 1st Edition, VPT, 2014

Essential Reading / Recommended Reading

R1. The Internet of Things: Applications to the Smart Grid and Building Automation by – Olivier Hersent, Omar Elloumi and David Boswarthick – Wiley Publications -2012

R2. Honbo Zhou, “The Internet of Things in the Cloud: A Middleware Perspective”,  CRC Press, 2012

R3. David Easley and Jon Kleinberg, “Networks, Crowds, and Markets: Reasoning About a Highly Connected World”, Cambridge University Press, 2010

R4. Al-Fuqaha, Ala, et al. "Internet of things: A survey on enabling technologies, protocols, and applications." IEEE Communications Surveys & Tutorials 17.4 (2015): 2347-2376

R5. Tsitsigkos, Alkiviadis, et al. "A case study of internet of things using wireless sensor networks and smartphones." Proceedings of the Wireless World Research Forum (WWRF) Meeting: Technologies and Visions for a Sustainable Wireless Internet, Athens, Greece. Vol. 2325. 2012

R6. Ye, Mengmei, et al. "Security Analysis of Internet-of-Things: A Case Study of August Smart Lock."

Evaluation Pattern

CIA-70 marks

ESE-30 marks

 

ELC732 - DIGITAL IMAGE PROCESSING (2021 Batch)

Total Teaching Hours for Semester:45
No of Lecture Hours/Week:3
Max Marks:100
Credits:3

Course Objectives/Course Description

 

 

The course will cover techniques and tools for digital image processing, and finally also introduce image analysis techniques in the form of image segmentation and pattern classification. 

Learning Outcome

CO1: Demonstrate various image enhancement techniques in spatial domain

CO2: Explain fundamentals of image restoration and segmentation

CO3: Understand fundamentals of morphological image processing

CO4: Understand the fundamentals of low-level image processing applied for image enhancement, restoration and feature extraction processes

CO5: Apply the concept of motion estimation for image and video processing applications

Unit-1
Teaching Hours:9
INTRODUCTION TO DIGITAL IMAGE PROCESSING
 

Part1: Introduction, The Origins of Digital Image Processing, Examples of Fields that Use Digital Image Processing, Fundamental Steps in Digital Image Processing, Components of an Image Processing System, 

 

Part 2: Elements of Visual Perception, Light and the Electromagnetic Spectrum, Image Sensing and Acquisition, Image Sampling and Quantization, Some Basic Relationships Between Pixels, Introduction to the Basic Mathematical Tools Used in Digital Image Processing. Image Enhancement Techniques – Histogram Processing, Fundamentals of Spatial Filtering, Smoothing (Lowpass) Spatial Filters, Sharpening (Highpass) Spatial Filters

Unit-2
Teaching Hours:9
IMAGE RESTORATION AND SEGMENTATION
 

Part 1: A Model of the Image Degradation/Restoration Process, Noise Models, Restoration in the Presence of Noise Only—Spatial Filtering, 

Part 2: Image Reconstruction from Projections

 

Part 3 : Segmentation: Fundamentals, Point, Line, and Edge Detection, Thresholding, Feature Extraction: Background, Boundary Pre-processing, Boundary Feature Descriptors, Region Feature Descriptors

Unit-3
Teaching Hours:9
MORPHOLOGICAL IMAGE PROCESSING AND PATTERN CLASSIFICATION
 

Erosion and Dilation, Opening and Closing, The Hit-or-Miss Transform, Basic Morphological Algorithms

 

Patterns and Pattern Classes, Pattern Classification by Prototype Matching, Neural Networks and Deep Learning, Deep Convolutional Neural Networks

Unit-4
Teaching Hours:9
LOW LEVEL IMAGE PROCESSING
 

Introduction to Low-level Image Processing: Convolution and filtering, Image enhancement, Restoration

 

Feature extraction: Edges - Canny; Line detectors (Hough Transform), Corners - Harris and Hessian Affine, SIFT , Scale-Space Analysis, Gabor filter

Unit-5
Teaching Hours:9
MOTION ANALYSIS
 

Motion Analysis: Background Subtraction and Modeling, Optical Flow, Spatio-Temporal Analysis, Dynamic Stereo; Motion parameter estimation

Text Books And Reference Books:

T1.Rafael C. Gonzales, Richard E. Woods, “Digital Image Processing”, Fourth Edition, Pearson Education, 2018

T2. Richard Szeliski, Computer Vision: Algorithms and Applications, Springer-Verlag London Limited 2011

T3. ComputerVision: A Modern Approach, D. A. Forsyth, J. Ponce, Pearson Education, 2003

Essential Reading / Recommended Reading

R1. Anil Jain K, “Fundamentals Of Digital Image Processing”, PHI Learning Pvt. Ltd., 2011

R2. R.C. Gonzalez and R.E. Woods, Digital Image Processing, Addison- Wesley, 1992

R3. Christopher M. Bishop; Pattern Recognition and Machine Learning, Springer, 2006

Evaluation Pattern

CIA - 50marks

ESE - 50marks

ELC743E01 - CRYPTOGRAPHY AND NETWORK SECURITY (2021 Batch)

Total Teaching Hours for Semester:45
No of Lecture Hours/Week:3
Max Marks:100
Credits:3

Course Objectives/Course Description

 

This course introduces the various aspects of secured data transmission and reception. It deals with the study about various encryption and decryption techniques and standards. Finally it discusses about network security practices and system security

Learning Outcome

CO1: Explain the symmetric ciphers using DES

CO2: Describe the symmetric ciphers based on AES standard

CO3: Understand the key management and public key cryptosystem

CO4: Illustrate the Hash Functions, Authentication Protocol and Digital Signature

CO5: Understand system security measures against Malicious Software

Unit-1
Teaching Hours:9
SYMMETRIC CIPHERS ? TECHNIQUES AND STANDARDS I
 

Introduction: Services, Mechanisms and Attacks, OSI security Architecture, Model for network Security; Classical Encryption Techniques:Symmetric Cipher Model, Substitution Techniques, Transposition Techniques, Rotor Machines, Stegnography; 

 

Block Ciphers and Data Encryption Standard: Simplified DES, Block Cipher Principles, Data Encryption Standard, Strength of DES, Differential and Linear Crypt Analysis, Block Cipher Design Principles, Block Cipher Modes of Operation

Unit-2
Teaching Hours:9
SYMMETRIC CIPHERS ? TECHNIQUES AND STANDARDS II
 

Advanced Encryption Standard: Evaluation Criteria for AES, AES Cipher; More on Symmetric Ciphers: 2DES, Triple DES, Blowfish, RC5, Characteristics of Advanced Symmetric Block Ciphers, RC4 Stream Cipher; Confidentiality using Symmetric Encryption: Placement of Encryption Function, Traffic Confidentiality, Key Distribution, and Random Number Generation

Unit-3
Teaching Hours:9
PUBLIC KEY ENCRYPTION AND HASH FUNCTIONS
 

Public Key Cryptography and RSA: Principles of Public Key Cryptosystems, RSA Algorithm; Key Management and other public key cryptosystems: Key Management, Diffie-Hellman Key Exchange, Elliptic Curve arithmetic, Elliptic Curve Cryptography; 

Message Authentication and Hash Functions: Authentication Requirements, 

 

Authentication Functions, Message Authentication Codes, Hash Functions and MACs; Hash Algorithms- MD5 Message Digest Algorithm; Secure Hash Algorithm, RIPEMD 160, HMAC; Digital Signatures and Authentication Protocols- Digital Signatures, Authentication Protocols, Digital Signature Standards

Unit-4
Teaching Hours:9
NETWORK SECURITY PRACTICE
 

Authentication Applications- Kerberos, X.509 Authentication Service; Electronic Mail Security- Pretty Good Privacy, S/MIME; 

 

IP Security- IP Security Overview, IP Security Architecture, Authentication Header, Encapsulating Security Payload, Combining Security Associations; Web Security- Web Security Considerations, Secure Sockets Layer and Transport Layer Security, Secure Electronic Transaction

Unit-5
Teaching Hours:9
SYSTEM SECURITY
 

Intruders- Intruder Detection, Password Management; Malicious Software- Virus and Related Threats, Virus Counter Measures; Firewalls- Firewall Design Principles, Trusted Systems

Text Books And Reference Books:

T1. Michael Berthold, David J. Hand, “Intelligent Data Analysis”, Springer, 2007

T2. Tom White “Hadoop: The Definitive Guide” Third Edition, O’reilly Media, 2012

T3. Chris Eaton, Dirk DeRoos, Tom Deutsch, George Lapis, Paul Zikopoulos, “Understanding Big Data: Analytics for Enterprise Class Hadoop and Streaming Data”, McGrawHill Publishing, 2012.

T4. Anand Rajaraman and Jeffrey David Ullman, “Mining of Massive Datasets”, CUP, 2012

Essential Reading / Recommended Reading

R1. Bill Franks, “Taming the Big Data Tidal Wave: Finding Opportunities in Huge Data Streams with Advanced Analytics”, John Wiley& sons, 2012

R2. Glenn J. Myatt, “Making Sense of Data”, John Wiley & Sons, 2007

R3. Pete Warden, “Big Data Glossary”, O’Reilly, 2011

R4. Jiawei Han, Micheline Kamber “Data Mining Concepts and Techniques”, 2 nd Edition, Elsevier, Reprinted 2008.

R5. Da Ruan, Guoquing Chen, Etienne E.Kerre, Geert Wets, “Intelligent Data Mining”, Springer, 2007

R6. .Paul Zikopoulos, Dirkde Roos, Krishnan Parasuraman, Thomas Deutsch, James Giles , David Corrigan, “Harness the Power of Big Data The IBM Big Data Platform”, Tata McGraw Hill Publications, 2012

R7. Arshdeep Bahga, Vijay Madisetti, “Big Data Science & Analytics: A HandsOn Approach”,VPT, 2016

R8. Bart Baesens “Analytics in a Big Data World: The Essential Guide to Data Science and its Applications (WILEY Big Data Series)”, John Wiley & Sons,2014

Evaluation Pattern

CIA - 50marks

ESE - 50marks

ELC743E02 - C# AND .NET (2021 Batch)

Total Teaching Hours for Semester:45
No of Lecture Hours/Week:3
Max Marks:100
Credits:3

Course Objectives/Course Description

 

The objective of this course is to make the students understand the foundations of CLR execution
and the technologies of the .NET framework along with the object oriented aspects of C#

Learning Outcome

CO1: Explain the major elements of the .NET frame work,

CO2: Analyze the basic structure of a C# application

CO3: Develop programs using C# on .NET.

CO4: Design and develop Web based applications on .NET

CO5: Explain CLR framework.

Unit-1
Teaching Hours:9
INTRODUCTION TO C#
 

Introducing C#, Understanding .NET, overview of C#, Literals, Variables, Data Types, Operators, checked and unchecked operators, Expressions, Branching, Looping, Methods, implicit and explicit casting, Constant, Arrays, Array Class, Array List, String, String Builder, Structure, Enumerations, boxing and unboxing

Unit-2
Teaching Hours:9
OBJECT ORIENTED ASPECTS OF C#
 

Class, Objects, Constructors and its types, inheritance, properties, indexers, index overloading, polymorphism, sealed class and methods, interface, abstract class, abstract and interface, operator overloading, delegates, events, errors and exception, Threading

Unit-3
Teaching Hours:9
APPLICATION DEVELOPMENT ON .NET
 

Building windows application, Creating our own window forms with events and controls, menu creation, inheriting window forms, SDI and MDI application, Dialog Box(Modal and Modeless), accessing data with ADO.NET, DataSet, typed dataset, Data Adapter, updating database using stored procedures, SQL Server with ADO.NET, handling exceptions, validating controls, windows application configuration

Unit-4
Teaching Hours:9
WEB BASED APPLICATION DEVELOPMENT ON .NET
 

Programming web application with web forms, ASP.NET introduction, working with XML and .NET,Creating Virtual Directory and Web Application, session management techniques, web.config, web services, passing datasets, returning datasets from web services, handling transaction, handling exceptions, returning exceptions from SQL Server

Unit-5
Teaching Hours:9
CLR AND .NET FRAMEWORK
 

Assemblies, Versoning, Attributes, reflection, viewing meta data, type discovery, reflection on type, marshalling, remoting, security in .NET.

Text Books And Reference Books:

T1. Herbert Schildt, “The Complete Reference: C# 4.0”, Tata McGraw Hill, 2012.

 

T2. Christian Nagel et al. “Professional C# 2012 with .NET 4.5”, Wiley India, 2012

Essential Reading / Recommended Reading

R1.  Andrew Troelsen , “Pro C# 2010 and the .NET 4 Platform, Fifth edition, A Press, 2010

 

R2 Ian Griffiths, Matthew Adams, Jesse Liberty, “Programming C# 4.0”, Sixth Edition, O‟Reilly, 2010.

Evaluation Pattern

CIA - 50marks

ESE - 50marks

ELC744E01 - NATURAL LANGUAGE PROCESSING (2021 Batch)

Total Teaching Hours for Semester:45
No of Lecture Hours/Week:3
Max Marks:100
Credits:3

Course Objectives/Course Description

 

 

This course provides the students a general introduction including the use of state automata for language processing, fundamentals of syntax including a basic parse, advanced feature like feature structures and realistic parsing methodologies, basic concepts of remotes processing and details about a typical natural language processing application

Learning Outcome

CO1: Remember the approaches of Automata Theory, Probability Theory, Predicate Logic and Statistical techniques

CO2: Describe the process of top down parsing and bottom up parsing of string and morphological analysis of lexicons.

CO3: Experiment the techniques for handling questions and analyze the movement phenomenon in language

CO4: Describe shift reduce and deterministic parsers for ambiguity resolution and specifies language models

CO5: Explain recent trends in natural language and case studies in natural language processing

Unit-1
Teaching Hours:9
INTRODUCTION
 

Introduction to Natural Language Processing, Different Levels of language analysis, Representation and understanding, Linguistic background

Unit-2
Teaching Hours:9
GRAMMARS AND PARSING
 

Grammars and parsing, Top down and Bottom up parsers, Transition Network Grammars, Feature systems and augmented grammars, Morphological analysis and the lexicon, Parsing with features, Augmented Transition Networks

Unit-3
Teaching Hours:9
GRAMMARS FOR NATURAL LANGUAGE
 

Grammars for natural language, Movement phenomenon in language, Handling questions in context free grammars, Hold mechanisms in ATNs, Gap threading, Human preference in parsing, Shift reduce parsers, Deterministic parsers, Statistical methods for Ambiguity resolution.

Unit-4
Teaching Hours:9
SEMANTIC INTERPRETATION
 

Semantic Interpretation, word senses and ambiguity, Basic logical form language, Encoding ambiguity in logical from, Thematic roles, Linking syntax and semantics, Recent trends in NLP

Unit-5
Teaching Hours:9
LANGUAGE MODEL
 

Language Model: the Milton Model , THE META MODEL, Vision for the Future’, Strategies, NLP Change Techniques, Principle based NLP, Reframing, and Chunking Patterns, Recent Trends, Research Issues, Case studies

Text Books And Reference Books:

T1. Steven Bird, Ewan Klein, Edward Loper, “Natural Language Processing with Python”, O'Reilly Media; 1 edition (July 10, 2009)

T2. Pushpak Bhattacharyya, “Machine Translation”, Chapman and Hall/CRC; 1 edition (January 22, 2015)

T3. Matthew A Russell , “Mining the Social Web: Data Mining Facebook, Twitter, LinkedIn, Google+, GitHub, and More”, O'Reilly Media; Second Edition edition (October 20, 2013)

Essential Reading / Recommended Reading

R1. James Allen, Natural Language Understanding, Second Edition, 2003, Pearson Education

R2. Daniel Jurafsky & James H.Martin, “ Speech and Language Processing”, Pearson Education (Singapore) Pte. Ltd., 2002

Evaluation Pattern

CIA - 50marks

ESE - 50marks

MAOE761E01 - NUMERICAL METHODS OF DIFFERENTIAL EQUATIONS (2021 Batch)

Total Teaching Hours for Semester:45
No of Lecture Hours/Week:3
Max Marks:100
Credits:3

Course Objectives/Course Description

 

To enable the students to solve algebraic and transcendental equations, linear and nonlinear systems of equations, interpolate and extrapolate the given data, differentiate and integrate, solve ordinary differential equations and the boundary value problems numerically.

Learning Outcome

CO1: Solve algebraic and transcendental equations using numerical techniques.

CO2: Estimate results by forward and backward interpolation.

CO3: Solve integration using numerical techniques.

CO4: Apply finite difference method to solve boundary value problems of hyperbolic and elliptic differential equations.

CO5: Evaluate differential equations with boundary conditions using advanced computational techniques.

Unit-1
Teaching Hours:9
Solution of Equations and Eigenvalue Problems
 

Solution of algebraic and transcendental equations – Solution of linear and non - linear system of equations - Fixed point iteration method – Newton Raphson and Secant method – Gauss elimination method – Pivoting – Gauss Jordan method – Iterative methods of Gauss Jacobi and Gauss Seidel, Matrix inversion by Gauss Jordan method, Eigenvalues of a matrix by Power method and Jacobi’s method for symmetric matrices.

Unit-1
Teaching Hours:9
Solution of Equations and Eigenvalue Problems
 

Solution of algebraic and transcendental equations – Solution of linear and non - linear system of equations - Fixed point iteration method – Newton Raphson and Secant method – Gauss elimination method – Pivoting – Gauss Jordan method – Iterative methods of Gauss Jacobi and Gauss Seidel, Matrix inversion by Gauss Jordan method, Eigenvalues of a matrix by Power method and Jacobi’s method for symmetric matrices.

Unit-1
Teaching Hours:9
Solution of Equations and Eigenvalue Problems
 

Solution of algebraic and transcendental equations – Solution of linear and non - linear system of equations - Fixed point iteration method – Newton Raphson and Secant method – Gauss elimination method – Pivoting – Gauss Jordan method – Iterative methods of Gauss Jacobi and Gauss Seidel, Matrix inversion by Gauss Jordan method, Eigenvalues of a matrix by Power method and Jacobi’s method for symmetric matrices.

Unit-1
Teaching Hours:9
Solution of Equations and Eigenvalue Problems
 

Solution of algebraic and transcendental equations – Solution of linear and non - linear system of equations - Fixed point iteration method – Newton Raphson and Secant method – Gauss elimination method – Pivoting – Gauss Jordan method – Iterative methods of Gauss Jacobi and Gauss Seidel, Matrix inversion by Gauss Jordan method, Eigenvalues of a matrix by Power method and Jacobi’s method for symmetric matrices.

Unit-1
Teaching Hours:9
Solution of Equations and Eigenvalue Problems
 

Solution of algebraic and transcendental equations – Solution of linear and non - linear system of equations - Fixed point iteration method – Newton Raphson and Secant method – Gauss elimination method – Pivoting – Gauss Jordan method – Iterative methods of Gauss Jacobi and Gauss Seidel, Matrix inversion by Gauss Jordan method, Eigenvalues of a matrix by Power method and Jacobi’s method for symmetric matrices.

Unit-1
Teaching Hours:9
Solution of Equations and Eigenvalue Problems
 

Solution of algebraic and transcendental equations – Solution of linear and non - linear system of equations - Fixed point iteration method – Newton Raphson and Secant method – Gauss elimination method – Pivoting – Gauss Jordan method – Iterative methods of Gauss Jacobi and Gauss Seidel, Matrix inversion by Gauss Jordan method, Eigenvalues of a matrix by Power method and Jacobi’s method for symmetric matrices.

Unit-1
Teaching Hours:9
Solution of Equations and Eigenvalue Problems
 

Solution of algebraic and transcendental equations – Solution of linear and non - linear system of equations - Fixed point iteration method – Newton Raphson and Secant method – Gauss elimination method – Pivoting – Gauss Jordan method – Iterative methods of Gauss Jacobi and Gauss Seidel, Matrix inversion by Gauss Jordan method, Eigenvalues of a matrix by Power method and Jacobi’s method for symmetric matrices.

Unit-1
Teaching Hours:9
Solution of Equations and Eigenvalue Problems
 

Solution of algebraic and transcendental equations – Solution of linear and non - linear system of equations - Fixed point iteration method – Newton Raphson and Secant method – Gauss elimination method – Pivoting – Gauss Jordan method – Iterative methods of Gauss Jacobi and Gauss Seidel, Matrix inversion by Gauss Jordan method, Eigenvalues of a matrix by Power method and Jacobi’s method for symmetric matrices.

Unit-2
Teaching Hours:9
Interpolation and Approximation
 

Interpolation with unequal intervals – Lagrange’s interpolation – Newton’s divided difference interpolation – Cubic Splines –Interpolation with equal  intervals – Newton’s forward and backward difference formulae.

Unit-2
Teaching Hours:9
Interpolation and Approximation
 

Interpolation with unequal intervals – Lagrange’s interpolation – Newton’s divided difference interpolation – Cubic Splines –Interpolation with equal  intervals – Newton’s forward and backward difference formulae.

Unit-2
Teaching Hours:9
Interpolation and Approximation
 

Interpolation with unequal intervals – Lagrange’s interpolation – Newton’s divided difference interpolation – Cubic Splines –Interpolation with equal  intervals – Newton’s forward and backward difference formulae.

Unit-2
Teaching Hours:9
Interpolation and Approximation
 

Interpolation with unequal intervals – Lagrange’s interpolation – Newton’s divided difference interpolation – Cubic Splines –Interpolation with equal  intervals – Newton’s forward and backward difference formulae.

Unit-2
Teaching Hours:9
Interpolation and Approximation
 

Interpolation with unequal intervals – Lagrange’s interpolation – Newton’s divided difference interpolation – Cubic Splines –Interpolation with equal  intervals – Newton’s forward and backward difference formulae.

Unit-2
Teaching Hours:9
Interpolation and Approximation
 

Interpolation with unequal intervals – Lagrange’s interpolation – Newton’s divided difference interpolation – Cubic Splines –Interpolation with equal  intervals – Newton’s forward and backward difference formulae.

Unit-2
Teaching Hours:9
Interpolation and Approximation
 

Interpolation with unequal intervals – Lagrange’s interpolation – Newton’s divided difference interpolation – Cubic Splines –Interpolation with equal  intervals – Newton’s forward and backward difference formulae.

Unit-2
Teaching Hours:9
Interpolation and Approximation
 

Interpolation with unequal intervals – Lagrange’s interpolation – Newton’s divided difference interpolation – Cubic Splines –Interpolation with equal  intervals – Newton’s forward and backward difference formulae.

Unit-3
Teaching Hours:9
Numerical Differentiation and Integration
 

Approximation of derivatives using interpolation polynomials – Numerical integration using Trapezoidal, Simpson’s 1/3 rule – Romberg’s Method – Two point and three point Gaussian quadrature formulae – Evaluation of double integrals by Trapezoidal and Simpson’s 1/3 rules.

Unit-3
Teaching Hours:9
Numerical Differentiation and Integration
 

Approximation of derivatives using interpolation polynomials – Numerical integration using Trapezoidal, Simpson’s 1/3 rule – Romberg’s Method – Two point and three point Gaussian quadrature formulae – Evaluation of double integrals by Trapezoidal and Simpson’s 1/3 rules.

Unit-3
Teaching Hours:9
Numerical Differentiation and Integration
 

Approximation of derivatives using interpolation polynomials – Numerical integration using Trapezoidal, Simpson’s 1/3 rule – Romberg’s Method – Two point and three point Gaussian quadrature formulae – Evaluation of double integrals by Trapezoidal and Simpson’s 1/3 rules.

Unit-3
Teaching Hours:9
Numerical Differentiation and Integration
 

Approximation of derivatives using interpolation polynomials – Numerical integration using Trapezoidal, Simpson’s 1/3 rule – Romberg’s Method – Two point and three point Gaussian quadrature formulae – Evaluation of double integrals by Trapezoidal and Simpson’s 1/3 rules.

Unit-3
Teaching Hours:9
Numerical Differentiation and Integration
 

Approximation of derivatives using interpolation polynomials – Numerical integration using Trapezoidal, Simpson’s 1/3 rule – Romberg’s Method – Two point and three point Gaussian quadrature formulae – Evaluation of double integrals by Trapezoidal and Simpson’s 1/3 rules.

Unit-3
Teaching Hours:9
Numerical Differentiation and Integration
 

Approximation of derivatives using interpolation polynomials – Numerical integration using Trapezoidal, Simpson’s 1/3 rule – Romberg’s Method – Two point and three point Gaussian quadrature formulae – Evaluation of double integrals by Trapezoidal and Simpson’s 1/3 rules.

Unit-3
Teaching Hours:9
Numerical Differentiation and Integration
 

Approximation of derivatives using interpolation polynomials – Numerical integration using Trapezoidal, Simpson’s 1/3 rule – Romberg’s Method – Two point and three point Gaussian quadrature formulae – Evaluation of double integrals by Trapezoidal and Simpson’s 1/3 rules.

Unit-3
Teaching Hours:9
Numerical Differentiation and Integration
 

Approximation of derivatives using interpolation polynomials – Numerical integration using Trapezoidal, Simpson’s 1/3 rule – Romberg’s Method – Two point and three point Gaussian quadrature formulae – Evaluation of double integrals by Trapezoidal and Simpson’s 1/3 rules.

Unit-4
Teaching Hours:9
Initial Value Problems For Ordinary Differential Equations
 

Single step methods – Taylor’s series method – Euler’s method – Modified Euler’s method – Fourth order Runge – Kutta method for solving first order equations – Multi step methods – Milne’s and Adams – Bash forth predictor corrector methods for solving first order ordinary differential equations. Inferences for Proportions and Count Data Inferences on Proportion , Inferences on Comparing Two Proportions

Unit-4
Teaching Hours:9
Initial Value Problems For Ordinary Differential Equations
 

Single step methods – Taylor’s series method – Euler’s method – Modified Euler’s method – Fourth order Runge – Kutta method for solving first order equations – Multi step methods – Milne’s and Adams – Bash forth predictor corrector methods for solving first order ordinary differential equations. Inferences for Proportions and Count Data Inferences on Proportion , Inferences on Comparing Two Proportions

Unit-4
Teaching Hours:9
Initial Value Problems For Ordinary Differential Equations
 

Single step methods – Taylor’s series method – Euler’s method – Modified Euler’s method – Fourth order Runge – Kutta method for solving first order equations – Multi step methods – Milne’s and Adams – Bash forth predictor corrector methods for solving first order ordinary differential equations. Inferences for Proportions and Count Data Inferences on Proportion , Inferences on Comparing Two Proportions

Unit-4
Teaching Hours:9
Initial Value Problems For Ordinary Differential Equations
 

Single step methods – Taylor’s series method – Euler’s method – Modified Euler’s method – Fourth order Runge – Kutta method for solving first order equations – Multi step methods – Milne’s and Adams – Bash forth predictor corrector methods for solving first order ordinary differential equations. Inferences for Proportions and Count Data Inferences on Proportion , Inferences on Comparing Two Proportions

Unit-4
Teaching Hours:9
Initial Value Problems For Ordinary Differential Equations
 

Single step methods – Taylor’s series method – Euler’s method – Modified Euler’s method – Fourth order Runge – Kutta method for solving first order equations – Multi step methods – Milne’s and Adams – Bash forth predictor corrector methods for solving first order ordinary differential equations. Inferences for Proportions and Count Data Inferences on Proportion , Inferences on Comparing Two Proportions

Unit-4
Teaching Hours:9
Initial Value Problems For Ordinary Differential Equations
 

Single step methods – Taylor’s series method – Euler’s method – Modified Euler’s method – Fourth order Runge – Kutta method for solving first order equations – Multi step methods – Milne’s and Adams – Bash forth predictor corrector methods for solving first order ordinary differential equations. Inferences for Proportions and Count Data Inferences on Proportion , Inferences on Comparing Two Proportions

Unit-4
Teaching Hours:9
Initial Value Problems For Ordinary Differential Equations
 

Single step methods – Taylor’s series method – Euler’s method – Modified Euler’s method – Fourth order Runge – Kutta method for solving first order equations – Multi step methods – Milne’s and Adams – Bash forth predictor corrector methods for solving first order ordinary differential equations. Inferences for Proportions and Count Data Inferences on Proportion , Inferences on Comparing Two Proportions

Unit-4
Teaching Hours:9
Initial Value Problems For Ordinary Differential Equations
 

Single step methods – Taylor’s series method – Euler’s method – Modified Euler’s method – Fourth order Runge – Kutta method for solving first order equations – Multi step methods – Milne’s and Adams – Bash forth predictor corrector methods for solving first order ordinary differential equations. Inferences for Proportions and Count Data Inferences on Proportion , Inferences on Comparing Two Proportions

Unit-5
Teaching Hours:9
Boundary Value Problems In Ordinary And Partial Differential Equations
 

Finite difference methods for solving second order two – point linear boundary value problems – Finite difference techniques for the solution of two dimensional Laplace’s and Poison’s equations on rectangular domain – One dimensional heat flow equation by explicit and implicit (Crank Nicholson) methods – One dimensional wave equation by explicit method.

Unit-5
Teaching Hours:9
Boundary Value Problems In Ordinary And Partial Differential Equations
 

Finite difference methods for solving second order two – point linear boundary value problems – Finite difference techniques for the solution of two dimensional Laplace’s and Poison’s equations on rectangular domain – One dimensional heat flow equation by explicit and implicit (Crank Nicholson) methods – One dimensional wave equation by explicit method.

Unit-5
Teaching Hours:9
Boundary Value Problems In Ordinary And Partial Differential Equations
 

Finite difference methods for solving second order two – point linear boundary value problems – Finite difference techniques for the solution of two dimensional Laplace’s and Poison’s equations on rectangular domain – One dimensional heat flow equation by explicit and implicit (Crank Nicholson) methods – One dimensional wave equation by explicit method.

Unit-5
Teaching Hours:9
Boundary Value Problems In Ordinary And Partial Differential Equations
 

Finite difference methods for solving second order two – point linear boundary value problems – Finite difference techniques for the solution of two dimensional Laplace’s and Poison’s equations on rectangular domain – One dimensional heat flow equation by explicit and implicit (Crank Nicholson) methods – One dimensional wave equation by explicit method.

Unit-5
Teaching Hours:9
Boundary Value Problems In Ordinary And Partial Differential Equations
 

Finite difference methods for solving second order two – point linear boundary value problems – Finite difference techniques for the solution of two dimensional Laplace’s and Poison’s equations on rectangular domain – One dimensional heat flow equation by explicit and implicit (Crank Nicholson) methods – One dimensional wave equation by explicit method.

Unit-5
Teaching Hours:9
Boundary Value Problems In Ordinary And Partial Differential Equations
 

Finite difference methods for solving second order two – point linear boundary value problems – Finite difference techniques for the solution of two dimensional Laplace’s and Poison’s equations on rectangular domain – One dimensional heat flow equation by explicit and implicit (Crank Nicholson) methods – One dimensional wave equation by explicit method.

Unit-5
Teaching Hours:9
Boundary Value Problems In Ordinary And Partial Differential Equations
 

Finite difference methods for solving second order two – point linear boundary value problems – Finite difference techniques for the solution of two dimensional Laplace’s and Poison’s equations on rectangular domain – One dimensional heat flow equation by explicit and implicit (Crank Nicholson) methods – One dimensional wave equation by explicit method.

Unit-5
Teaching Hours:9
Boundary Value Problems In Ordinary And Partial Differential Equations
 

Finite difference methods for solving second order two – point linear boundary value problems – Finite difference techniques for the solution of two dimensional Laplace’s and Poison’s equations on rectangular domain – One dimensional heat flow equation by explicit and implicit (Crank Nicholson) methods – One dimensional wave equation by explicit method.

Text Books And Reference Books:

M.K. Jain, “Numerical Solution of Differential Equations”, Wiley Eastern, 1984.

Essential Reading / Recommended Reading

R1. G.D. Smith, “Numerical Solution of Partial Differential Equations”, Oxford Univ. Press, 2004.

R2. M. K. Jain, S.R.K. Iyengar and R.K. Jain, “Computational Methods for Partial Differential  Equations”, Wiley Eastern, 2005.

R3.. S. S. Sastry, “Numerical Analysis for Engineers”,  Tata Mcgraw Hill Edition.

R4. C. Chapra and Raymond P. Canale, Solution of simultaneous non-linear algebraic systems, 7th edition, McGraw-Hill, 2014.

Evaluation Pattern

Continuous Internal Assessment (CIA) : 50% (50 marks out of 100 marks)

End Semester Examination(ESE) : 50% (50 marks out of 100 marks)

 

Components of the CIA

CIA I  :  Assignments / Tests                                             : 10 marks

CIA II :   Mid Semester Examination (Theory)                : 25 marks            

CIAIII:    Quiz/Seminar/Assignments                             : 10 marks

Attendance                                                                           : 05 marks

            Total                                                                                       : 50 marks

Mid Semester Examination (MSE) : Theory Papers:

  • The MSE is conducted for 50 marks of 2 hours duration.
  • Question paper pattern; Four questions have to be answered in part A without any choice. One question need to be answered out of two in part B. Each  question carries 10 marks

End Semester Examination (ESE):

The ESE is conducted for 100 marks of 3 hours duration.

The syllabus for the theory papers are divided into FIVE units and each unit carries equal Weightage in terms of marks distribution.

Question paper pattern is as follows.

Two full questions with either or choice will be drawn from each unit. Each question carries 20 marks. There could be a maximum of three sub divisions in a question. The emphasis on the questions is to test the objectiveness, analytical skill and application skill of the concept, from a question bank which reviewed and updated every year

The criteria for drawing the questions from the Question Bank are as follows

50 % - Medium Level questions

25 % - Simple level questions

25 % - Complex level questions

MEOE761E03 - BASIC AUTOMOBILE ENGINEERING (2021 Batch)

Total Teaching Hours for Semester:45
No of Lecture Hours/Week:3
Max Marks:100
Credits:3

Course Objectives/Course Description

 

The objective of this course is to impart knowledge to students in various systems of Automobile Engineering and to learn the fundamental principles, construction and auxiliary systems of automotive engines.

Learning Outcome

CO-1: Describe the chassis, body and engine components of an automobile [L2]

CO-2: Understand knowledge of transmission, cooling and lubrication systems [L2]

CO-3: Understand the working of engine injection and ignition systems. [L2]

CO-4: Understand the working of steering, brakes and suspension systems. [L3]

CO-5: Apply the knowledge in curbing the emissions from vehicles and methods for control. [L3]

Unit-1
Teaching Hours:9
Engine
 

Engine classifications, number of strokes, cylinders, types of combustion chambers for petrol and diesel engines, valves, valve arrangements and operating mechanisms, piston, design basis, types, piston rings, firing order, fly wheel.

Unit-1
Teaching Hours:9
Introduction
 

Classification of vehicles, options of prime movers, transmission and arrangements.

Unit-1
Teaching Hours:9
Engine
 

Engine classifications, number of strokes, cylinders, types of combustion chambers for petrol and diesel engines, valves, valve arrangements and operating mechanisms, piston, design basis, types, piston rings, firing order, fly wheel.

Unit-1
Teaching Hours:9
Introduction
 

Classification of vehicles, options of prime movers, transmission and arrangements.

Unit-1
Teaching Hours:9
Engine
 

Engine classifications, number of strokes, cylinders, types of combustion chambers for petrol and diesel engines, valves, valve arrangements and operating mechanisms, piston, design basis, types, piston rings, firing order, fly wheel.

Unit-1
Teaching Hours:9
Introduction
 

Classification of vehicles, options of prime movers, transmission and arrangements.

Unit-1
Teaching Hours:9
Engine
 

Engine classifications, number of strokes, cylinders, types of combustion chambers for petrol and diesel engines, valves, valve arrangements and operating mechanisms, piston, design basis, types, piston rings, firing order, fly wheel.

Unit-1
Teaching Hours:9
Introduction
 

Classification of vehicles, options of prime movers, transmission and arrangements.

Unit-1
Teaching Hours:9
Engine
 

Engine classifications, number of strokes, cylinders, types of combustion chambers for petrol and diesel engines, valves, valve arrangements and operating mechanisms, piston, design basis, types, piston rings, firing order, fly wheel.

Unit-1
Teaching Hours:9
Introduction
 

Classification of vehicles, options of prime movers, transmission and arrangements.

Unit-1
Teaching Hours:9
Engine
 

Engine classifications, number of strokes, cylinders, types of combustion chambers for petrol and diesel engines, valves, valve arrangements and operating mechanisms, piston, design basis, types, piston rings, firing order, fly wheel.

Unit-1
Teaching Hours:9
Introduction
 

Classification of vehicles, options of prime movers, transmission and arrangements.

Unit-1
Teaching Hours:9
Engine
 

Engine classifications, number of strokes, cylinders, types of combustion chambers for petrol and diesel engines, valves, valve arrangements and operating mechanisms, piston, design basis, types, piston rings, firing order, fly wheel.

Unit-1
Teaching Hours:9
Introduction
 

Classification of vehicles, options of prime movers, transmission and arrangements.

Unit-1
Teaching Hours:9
Engine
 

Engine classifications, number of strokes, cylinders, types of combustion chambers for petrol and diesel engines, valves, valve arrangements and operating mechanisms, piston, design basis, types, piston rings, firing order, fly wheel.

Unit-1
Teaching Hours:9
Introduction
 

Classification of vehicles, options of prime movers, transmission and arrangements.

Unit-2
Teaching Hours:9
Carburettors and Injection Systems
 

Carburetors, fuel injection systems for diesel and petrol engines, electronic fuel injection, super chargers, muffers.

Unit-2
Teaching Hours:9
Fuel Supply Systems
 

Petrol and diesel engines, fuel pumps, Mechanical and electrical diaphragm pumps, air and fuel filters.

Unit-2
Teaching Hours:9
Carburettors and Injection Systems
 

Carburetors, fuel injection systems for diesel and petrol engines, electronic fuel injection, super chargers, muffers.

Unit-2
Teaching Hours:9
Fuel Supply Systems
 

Petrol and diesel engines, fuel pumps, Mechanical and electrical diaphragm pumps, air and fuel filters.

Unit-2
Teaching Hours:9
Carburettors and Injection Systems
 

Carburetors, fuel injection systems for diesel and petrol engines, electronic fuel injection, super chargers, muffers.

Unit-2
Teaching Hours:9
Fuel Supply Systems
 

Petrol and diesel engines, fuel pumps, Mechanical and electrical diaphragm pumps, air and fuel filters.

Unit-2
Teaching Hours:9
Carburettors and Injection Systems
 

Carburetors, fuel injection systems for diesel and petrol engines, electronic fuel injection, super chargers, muffers.

Unit-2
Teaching Hours:9
Fuel Supply Systems
 

Petrol and diesel engines, fuel pumps, Mechanical and electrical diaphragm pumps, air and fuel filters.

Unit-2
Teaching Hours:9
Carburettors and Injection Systems
 

Carburetors, fuel injection systems for diesel and petrol engines, electronic fuel injection, super chargers, muffers.

Unit-2
Teaching Hours:9
Fuel Supply Systems
 

Petrol and diesel engines, fuel pumps, Mechanical and electrical diaphragm pumps, air and fuel filters.

Unit-2
Teaching Hours:9
Carburettors and Injection Systems
 

Carburetors, fuel injection systems for diesel and petrol engines, electronic fuel injection, super chargers, muffers.

Unit-2
Teaching Hours:9
Fuel Supply Systems
 

Petrol and diesel engines, fuel pumps, Mechanical and electrical diaphragm pumps, air and fuel filters.

Unit-2
Teaching Hours:9
Carburettors and Injection Systems
 

Carburetors, fuel injection systems for diesel and petrol engines, electronic fuel injection, super chargers, muffers.

Unit-2
Teaching Hours:9
Fuel Supply Systems
 

Petrol and diesel engines, fuel pumps, Mechanical and electrical diaphragm pumps, air and fuel filters.

Unit-2
Teaching Hours:9
Carburettors and Injection Systems
 

Carburetors, fuel injection systems for diesel and petrol engines, electronic fuel injection, super chargers, muffers.

Unit-2
Teaching Hours:9
Fuel Supply Systems
 

Petrol and diesel engines, fuel pumps, Mechanical and electrical diaphragm pumps, air and fuel filters.

Unit-3
Teaching Hours:9
Cooling and Lubrication system for IC Engines
 

Necessity, methods of cooling, air cooling, water cooling, components of water cooling systems, Objective of lubrication, requirements of lubricant, types of lubricant, and various systems of engine lubrication. 

Unit-3
Teaching Hours:9
Electrical System
 

Ignition system, distributor, electronic ignition, magneto, dynamo, alternator, regulator, starting motor, introduction to various accessories, typical wiring diagram.

 

Unit-3
Teaching Hours:9
Cooling and Lubrication system for IC Engines
 

Necessity, methods of cooling, air cooling, water cooling, components of water cooling systems, Objective of lubrication, requirements of lubricant, types of lubricant, and various systems of engine lubrication. 

Unit-3
Teaching Hours:9
Electrical System
 

Ignition system, distributor, electronic ignition, magneto, dynamo, alternator, regulator, starting motor, introduction to various accessories, typical wiring diagram.

 

Unit-3
Teaching Hours:9
Cooling and Lubrication system for IC Engines
 

Necessity, methods of cooling, air cooling, water cooling, components of water cooling systems, Objective of lubrication, requirements of lubricant, types of lubricant, and various systems of engine lubrication. 

Unit-3
Teaching Hours:9
Electrical System
 

Ignition system, distributor, electronic ignition, magneto, dynamo, alternator, regulator, starting motor, introduction to various accessories, typical wiring diagram.

 

Unit-3
Teaching Hours:9
Cooling and Lubrication system for IC Engines
 

Necessity, methods of cooling, air cooling, water cooling, components of water cooling systems, Objective of lubrication, requirements of lubricant, types of lubricant, and various systems of engine lubrication. 

Unit-3
Teaching Hours:9
Electrical System
 

Ignition system, distributor, electronic ignition, magneto, dynamo, alternator, regulator, starting motor, introduction to various accessories, typical wiring diagram.

 

Unit-3
Teaching Hours:9
Cooling and Lubrication system for IC Engines
 

Necessity, methods of cooling, air cooling, water cooling, components of water cooling systems, Objective of lubrication, requirements of lubricant, types of lubricant, and various systems of engine lubrication. 

Unit-3
Teaching Hours:9
Electrical System
 

Ignition system, distributor, electronic ignition, magneto, dynamo, alternator, regulator, starting motor, introduction to various accessories, typical wiring diagram.

 

Unit-3
Teaching Hours:9
Cooling and Lubrication system for IC Engines
 

Necessity, methods of cooling, air cooling, water cooling, components of water cooling systems, Objective of lubrication, requirements of lubricant, types of lubricant, and various systems of engine lubrication. 

Unit-3
Teaching Hours:9
Electrical System
 

Ignition system, distributor, electronic ignition, magneto, dynamo, alternator, regulator, starting motor, introduction to various accessories, typical wiring diagram.

 

Unit-3
Teaching Hours:9
Cooling and Lubrication system for IC Engines
 

Necessity, methods of cooling, air cooling, water cooling, components of water cooling systems, Objective of lubrication, requirements of lubricant, types of lubricant, and various systems of engine lubrication. 

Unit-3
Teaching Hours:9
Electrical System
 

Ignition system, distributor, electronic ignition, magneto, dynamo, alternator, regulator, starting motor, introduction to various accessories, typical wiring diagram.

 

Unit-3
Teaching Hours:9
Cooling and Lubrication system for IC Engines
 

Necessity, methods of cooling, air cooling, water cooling, components of water cooling systems, Objective of lubrication, requirements of lubricant, types of lubricant, and various systems of engine lubrication. 

Unit-3
Teaching Hours:9
Electrical System
 

Ignition system, distributor, electronic ignition, magneto, dynamo, alternator, regulator, starting motor, introduction to various accessories, typical wiring diagram.

 

Unit-4
Teaching Hours:9
Chassis
 

Introduction of chassis, classification, conventional construction, frameless construction, introduction to vehicle dimensions. 

Unit-4
Teaching Hours:9
Transmission System
 

Introduction to single plate clutch, wet and dry type, clutch actuating mechanisms, study of clutch components, fluid fly wheel. Gear box , Theory, four speed and five speed sliding mesh, constant mesh and synchromesh type, selector mechanism, automatic transmission, overdrive, transfer box four wheel drive, torque converter, propeller shaft. 

Unit-4
Teaching Hours:9
Chassis
 

Introduction of chassis, classification, conventional construction, frameless construction, introduction to vehicle dimensions. 

Unit-4
Teaching Hours:9
Transmission System
 

Introduction to single plate clutch, wet and dry type, clutch actuating mechanisms, study of clutch components, fluid fly wheel. Gear box , Theory, four speed and five speed sliding mesh, constant mesh and synchromesh type, selector mechanism, automatic transmission, overdrive, transfer box four wheel drive, torque converter, propeller shaft. 

Unit-4
Teaching Hours:9
Chassis
 

Introduction of chassis, classification, conventional construction, frameless construction, introduction to vehicle dimensions. 

Unit-4
Teaching Hours:9
Transmission System
 

Introduction to single plate clutch, wet and dry type, clutch actuating mechanisms, study of clutch components, fluid fly wheel. Gear box , Theory, four speed and five speed sliding mesh, constant mesh and synchromesh type, selector mechanism, automatic transmission, overdrive, transfer box four wheel drive, torque converter, propeller shaft. 

Unit-4
Teaching Hours:9
Chassis
 

Introduction of chassis, classification, conventional construction, frameless construction, introduction to vehicle dimensions. 

Unit-4
Teaching Hours:9
Transmission System
 

Introduction to single plate clutch, wet and dry type, clutch actuating mechanisms, study of clutch components, fluid fly wheel. Gear box , Theory, four speed and five speed sliding mesh, constant mesh and synchromesh type, selector mechanism, automatic transmission, overdrive, transfer box four wheel drive, torque converter, propeller shaft. 

Unit-4
Teaching Hours:9
Chassis
 

Introduction of chassis, classification, conventional construction, frameless construction, introduction to vehicle dimensions. 

Unit-4
Teaching Hours:9
Transmission System
 

Introduction to single plate clutch, wet and dry type, clutch actuating mechanisms, study of clutch components, fluid fly wheel. Gear box , Theory, four speed and five speed sliding mesh, constant mesh and synchromesh type, selector mechanism, automatic transmission, overdrive, transfer box four wheel drive, torque converter, propeller shaft. 

Unit-4
Teaching Hours:9
Chassis
 

Introduction of chassis, classification, conventional construction, frameless construction, introduction to vehicle dimensions. 

Unit-4
Teaching Hours:9
Transmission System
 

Introduction to single plate clutch, wet and dry type, clutch actuating mechanisms, study of clutch components, fluid fly wheel. Gear box , Theory, four speed and five speed sliding mesh, constant mesh and synchromesh type, selector mechanism, automatic transmission, overdrive, transfer box four wheel drive, torque converter, propeller shaft. 

Unit-4
Teaching Hours:9
Chassis
 

Introduction of chassis, classification, conventional construction, frameless construction, introduction to vehicle dimensions. 

Unit-4
Teaching Hours:9
Transmission System
 

Introduction to single plate clutch, wet and dry type, clutch actuating mechanisms, study of clutch components, fluid fly wheel. Gear box , Theory, four speed and five speed sliding mesh, constant mesh and synchromesh type, selector mechanism, automatic transmission, overdrive, transfer box four wheel drive, torque converter, propeller shaft. 

Unit-4
Teaching Hours:9
Chassis
 

Introduction of chassis, classification, conventional construction, frameless construction, introduction to vehicle dimensions. 

Unit-4
Teaching Hours:9
Transmission System
 

Introduction to single plate clutch, wet and dry type, clutch actuating mechanisms, study of clutch components, fluid fly wheel. Gear box , Theory, four speed and five speed sliding mesh, constant mesh and synchromesh type, selector mechanism, automatic transmission, overdrive, transfer box four wheel drive, torque converter, propeller shaft. 

Unit-5
Teaching Hours:9
Steering System
 

Steering mechanisms, types of brakes and brake actuation mechanisms.

Unit-5
Teaching Hours:9
Suspension System
 

Systems, springs, shock absorbers, axles, front and rear, different methods of floating rear axle, front axle and wheel alignment, types of rims and tyres.

Unit-5
Teaching Hours:9
Steering System
 

Steering mechanisms, types of brakes and brake actuation mechanisms.

Unit-5
Teaching Hours:9
Suspension System
 

Systems, springs, shock absorbers, axles, front and rear, different methods of floating rear axle, front axle and wheel alignment, types of rims and tyres.

Unit-5
Teaching Hours:9
Steering System
 

Steering mechanisms, types of brakes and brake actuation mechanisms.

Unit-5
Teaching Hours:9
Suspension System
 

Systems, springs, shock absorbers, axles, front and rear, different methods of floating rear axle, front axle and wheel alignment, types of rims and tyres.

Unit-5
Teaching Hours:9
Steering System
 

Steering mechanisms, types of brakes and brake actuation mechanisms.

Unit-5
Teaching Hours:9
Suspension System
 

Systems, springs, shock absorbers, axles, front and rear, different methods of floating rear axle, front axle and wheel alignment, types of rims and tyres.

Unit-5
Teaching Hours:9
Steering System
 

Steering mechanisms, types of brakes and brake actuation mechanisms.

Unit-5
Teaching Hours:9
Suspension System
 

Systems, springs, shock absorbers, axles, front and rear, different methods of floating rear axle, front axle and wheel alignment, types of rims and tyres.

Unit-5
Teaching Hours:9
Steering System
 

Steering mechanisms, types of brakes and brake actuation mechanisms.

Unit-5
Teaching Hours:9
Suspension System
 

Systems, springs, shock absorbers, axles, front and rear, different methods of floating rear axle, front axle and wheel alignment, types of rims and tyres.

Unit-5
Teaching Hours:9
Steering System
 

Steering mechanisms, types of brakes and brake actuation mechanisms.

Unit-5
Teaching Hours:9
Suspension System
 

Systems, springs, shock absorbers, axles, front and rear, different methods of floating rear axle, front axle and wheel alignment, types of rims and tyres.

Unit-5
Teaching Hours:9
Steering System
 

Steering mechanisms, types of brakes and brake actuation mechanisms.

Unit-5
Teaching Hours:9
Suspension System
 

Systems, springs, shock absorbers, axles, front and rear, different methods of floating rear axle, front axle and wheel alignment, types of rims and tyres.

Text Books And Reference Books:

 T1- Heywood, John B, “Internal Combustion Engine Fundamentals”, McGraw-Hill, 2007.

T2- V Ganesan, “Internal Combustion Engines”, 4th edition, Tata McGraw-Hill publishing company Limited, 2012.

T3- Mathur & Sharma, “A Course in International Combustion Engines”, 8th edition, Dhanpat Rai & Sons., 1996.

T4- Colin R. Ferguson, Allen T Kirkpatrick, “Internal Combustion Engines”, 3rd edition, John Wiley & sons, 2016.

T5- Kripal Singh, “Automobile Engineering”, Vol.-1 & 2, Standard publisher distributors 2015.

T6- Joseph Heitner, “Automotive Mechanics”, East-West student edition 2014.

Essential Reading / Recommended Reading

R1- Edward. F. Obert, “I.C. Engines”, Harper International edition, 1973.

R2- V M Domkundwar, “Internal Combustion Engines”, 4th edition, Danpat Rai & Co, 2014.

R3- Willard W. Pulkrabek, “Engineering Fundamentals of the I.C. Engine”, 2nd edition, 2013.

R4- Lichty, “Combustion Engine Process”, 6th edition, Judge, 2000.

R5- Crouse. W.H. and Angling, D.L “Automobile Mechanics”2009.

R6- Judge, A W “Automobile Electrical System”

R7- K K Ramalingam, “Automobile engineering”, Scitech publications 2001.

Evaluation Pattern

ASSESSMENT PATTERN FOR THEORY COURSE

 

Component

Assessed for

Scaled Down to

1

CIA I

20 M

10 M

2

CIA II

50 M

25 M

3

CIA III

20 M

10 M

4

Attendance

5 M

5 M

5

ESE

100 M

50 M

 

 

Total

100 M

MEOE761E04 - SMART MATERIALS AND APPLICATIONS (2021 Batch)

Total Teaching Hours for Semester:45
No of Lecture Hours/Week:3
Max Marks:100
Credits:3

Course Objectives/Course Description

 

This interdisciplinary course not only gives an overview of the smart materials and its applications, but also gives an in-depth understanding of the issues involved. It begins by answering the important question: why miniaturize? This is followed by a quick summary of a variety of sensors, actuators, and systems. It then presents a comprehensive description of micro fabrication. This is followed by a detailed discussion of mechanics of solids as it pertains to micro and smart systems. While this part may be viewed as strength of materials and design, an effort is made to relate this to micro devices and discuss such topics as residual stress and stress gradients, lumped modelling using energy methods, anticlastic curvature, etc.

Learning Outcome

CO-1: Explain the overview of Smart materials. (L2)

CO-2: Explaining the principles of sensing and actuation systems. (L2)

CO-3: Evaluating techniques on control design and optics systems using smart materials (L2)

CO-4: Compute response of an electro-mechanical smart system using finite element method. (L2)

CO-5: Incorporate basic knowledge of micro systems and its applications. (L2)

Unit-1
Teaching Hours:9
INTRODUCTION
 

Characteristics of composites and ceramics materials, Dynamics and controls, cconcepts, Electro-magnetic materials and shape memory alloys-processing and characteristics 

Unit-1
Teaching Hours:9
INTRODUCTION
 

Characteristics of composites and ceramics materials, Dynamics and controls, cconcepts, Electro-magnetic materials and shape memory alloys-processing and characteristics 

Unit-1
Teaching Hours:9
INTRODUCTION
 

Characteristics of composites and ceramics materials, Dynamics and controls, cconcepts, Electro-magnetic materials and shape memory alloys-processing and characteristics 

Unit-1
Teaching Hours:9
INTRODUCTION
 

Characteristics of composites and ceramics materials, Dynamics and controls, cconcepts, Electro-magnetic materials and shape memory alloys-processing and characteristics 

Unit-1
Teaching Hours:9
INTRODUCTION
 

Characteristics of composites and ceramics materials, Dynamics and controls, cconcepts, Electro-magnetic materials and shape memory alloys-processing and characteristics 

Unit-1
Teaching Hours:9
INTRODUCTION
 

Characteristics of composites and ceramics materials, Dynamics and controls, cconcepts, Electro-magnetic materials and shape memory alloys-processing and characteristics 

Unit-1
Teaching Hours:9
INTRODUCTION
 

Characteristics of composites and ceramics materials, Dynamics and controls, cconcepts, Electro-magnetic materials and shape memory alloys-processing and characteristics 

Unit-1
Teaching Hours:9
INTRODUCTION
 

Characteristics of composites and ceramics materials, Dynamics and controls, cconcepts, Electro-magnetic materials and shape memory alloys-processing and characteristics 

Unit-2
Teaching Hours:9
SENSING AND ACTUATION
 

Principals of electromagnetic, acoustics, chemical and mechanical sensing and actuation, Types of sensors and their applications, their compatibility writer conventional and advanced materials, signal processing, principals and characterization. 

Unit-2
Teaching Hours:9
SENSING AND ACTUATION
 

Principals of electromagnetic, acoustics, chemical and mechanical sensing and actuation, Types of sensors and their applications, their compatibility writer conventional and advanced materials, signal processing, principals and characterization. 

Unit-2
Teaching Hours:9
SENSING AND ACTUATION
 

Principals of electromagnetic, acoustics, chemical and mechanical sensing and actuation, Types of sensors and their applications, their compatibility writer conventional and advanced materials, signal processing, principals and characterization. 

Unit-2
Teaching Hours:9
SENSING AND ACTUATION
 

Principals of electromagnetic, acoustics, chemical and mechanical sensing and actuation, Types of sensors and their applications, their compatibility writer conventional and advanced materials, signal processing, principals and characterization. 

Unit-2
Teaching Hours:9
SENSING AND ACTUATION
 

Principals of electromagnetic, acoustics, chemical and mechanical sensing and actuation, Types of sensors and their applications, their compatibility writer conventional and advanced materials, signal processing, principals and characterization. 

Unit-2
Teaching Hours:9
SENSING AND ACTUATION
 

Principals of electromagnetic, acoustics, chemical and mechanical sensing and actuation, Types of sensors and their applications, their compatibility writer conventional and advanced materials, signal processing, principals and characterization. 

Unit-2
Teaching Hours:9
SENSING AND ACTUATION
 

Principals of electromagnetic, acoustics, chemical and mechanical sensing and actuation, Types of sensors and their applications, their compatibility writer conventional and advanced materials, signal processing, principals and characterization. 

Unit-2
Teaching Hours:9
SENSING AND ACTUATION
 

Principals of electromagnetic, acoustics, chemical and mechanical sensing and actuation, Types of sensors and their applications, their compatibility writer conventional and advanced materials, signal processing, principals and characterization. 

Unit-3
Teaching Hours:9
CONTROL DESIGN
 

Design of shape memory alloys, Types of MR fluids, Characteristics and application, principals of MR fluid value designs, Magnetic circuit design, MR Dampers, Design issues. 

Unit-3
Teaching Hours:9
OPTICS AND ELECTROMAGNETIC
 

Principals of optical fiber technology, characteristics of active and adaptive optical system and components, design and manufacturing principles. 

Unit-3
Teaching Hours:9
CONTROL DESIGN
 

Design of shape memory alloys, Types of MR fluids, Characteristics and application, principals of MR fluid value designs, Magnetic circuit design, MR Dampers, Design issues. 

Unit-3
Teaching Hours:9
OPTICS AND ELECTROMAGNETIC
 

Principals of optical fiber technology, characteristics of active and adaptive optical system and components, design and manufacturing principles. 

Unit-3
Teaching Hours:9
CONTROL DESIGN
 

Design of shape memory alloys, Types of MR fluids, Characteristics and application, principals of MR fluid value designs, Magnetic circuit design, MR Dampers, Design issues. 

Unit-3
Teaching Hours:9
OPTICS AND ELECTROMAGNETIC
 

Principals of optical fiber technology, characteristics of active and adaptive optical system and components, design and manufacturing principles. 

Unit-3
Teaching Hours:9
CONTROL DESIGN
 

Design of shape memory alloys, Types of MR fluids, Characteristics and application, principals of MR fluid value designs, Magnetic circuit design, MR Dampers, Design issues. 

Unit-3
Teaching Hours:9
OPTICS AND ELECTROMAGNETIC
 

Principals of optical fiber technology, characteristics of active and adaptive optical system and components, design and manufacturing principles. 

Unit-3
Teaching Hours:9
CONTROL DESIGN
 

Design of shape memory alloys, Types of MR fluids, Characteristics and application, principals of MR fluid value designs, Magnetic circuit design, MR Dampers, Design issues. 

Unit-3
Teaching Hours:9
OPTICS AND ELECTROMAGNETIC
 

Principals of optical fiber technology, characteristics of active and adaptive optical system and components, design and manufacturing principles. 

Unit-3
Teaching Hours:9
CONTROL DESIGN
 

Design of shape memory alloys, Types of MR fluids, Characteristics and application, principals of MR fluid value designs, Magnetic circuit design, MR Dampers, Design issues. 

Unit-3
Teaching Hours:9
OPTICS AND ELECTROMAGNETIC
 

Principals of optical fiber technology, characteristics of active and adaptive optical system and components, design and manufacturing principles. 

Unit-3
Teaching Hours:9
CONTROL DESIGN
 

Design of shape memory alloys, Types of MR fluids, Characteristics and application, principals of MR fluid value designs, Magnetic circuit design, MR Dampers, Design issues. 

Unit-3
Teaching Hours:9
OPTICS AND ELECTROMAGNETIC
 

Principals of optical fiber technology, characteristics of active and adaptive optical system and components, design and manufacturing principles. 

Unit-3
Teaching Hours:9
CONTROL DESIGN
 

Design of shape memory alloys, Types of MR fluids, Characteristics and application, principals of MR fluid value designs, Magnetic circuit design, MR Dampers, Design issues. 

Unit-3
Teaching Hours:9
OPTICS AND ELECTROMAGNETIC
 

Principals of optical fiber technology, characteristics of active and adaptive optical system and components, design and manufacturing principles. 

Unit-4
Teaching Hours:9
Micro systems
 

Overview of Micro and smart systems, Processing of Sensors, Actuators and micro structures, Applications in diverse fields including Biomedical, Defence, Automobile and Aerospace Engineering.

Unit-4
Teaching Hours:9
Micro systems
 

Overview of Micro and smart systems, Processing of Sensors, Actuators and micro structures, Applications in diverse fields including Biomedical, Defence, Automobile and Aerospace Engineering.

Unit-4
Teaching Hours:9
Micro systems
 

Overview of Micro and smart systems, Processing of Sensors, Actuators and micro structures, Applications in diverse fields including Biomedical, Defence, Automobile and Aerospace Engineering.

Unit-4
Teaching Hours:9
Micro systems
 

Overview of Micro and smart systems, Processing of Sensors, Actuators and micro structures, Applications in diverse fields including Biomedical, Defence, Automobile and Aerospace Engineering.

Unit-4
Teaching Hours:9
Micro systems
 

Overview of Micro and smart systems, Processing of Sensors, Actuators and micro structures, Applications in diverse fields including Biomedical, Defence, Automobile and Aerospace Engineering.

Unit-4
Teaching Hours:9
Micro systems
 

Overview of Micro and smart systems, Processing of Sensors, Actuators and micro structures, Applications in diverse fields including Biomedical, Defence, Automobile and Aerospace Engineering.

Unit-4
Teaching Hours:9
Micro systems
 

Overview of Micro and smart systems, Processing of Sensors, Actuators and micro structures, Applications in diverse fields including Biomedical, Defence, Automobile and Aerospace Engineering.

Unit-4
Teaching Hours:9
Micro systems
 

Overview of Micro and smart systems, Processing of Sensors, Actuators and micro structures, Applications in diverse fields including Biomedical, Defence, Automobile and Aerospace Engineering.

Unit-5
Teaching Hours:9
MICRO FABRICATION PROCESSES
 

Overview of Micro Machining Technologies, miniaturization, conventional and silicon micro machining techniques, Ultrasonic machining, sandblasting, laser ablation, spark erosion, and photo lithography.

Unit-5
Teaching Hours:9
MICRO FABRICATION PROCESSES
 

Overview of Micro Machining Technologies, miniaturization, conventional and silicon micro machining techniques, Ultrasonic machining, sandblasting, laser ablation, spark erosion, and photo lithography.

Unit-5
Teaching Hours:9
MICRO FABRICATION PROCESSES
 

Overview of Micro Machining Technologies, miniaturization, conventional and silicon micro machining techniques, Ultrasonic machining, sandblasting, laser ablation, spark erosion, and photo lithography.

Unit-5
Teaching Hours:9
MICRO FABRICATION PROCESSES
 

Overview of Micro Machining Technologies, miniaturization, conventional and silicon micro machining techniques, Ultrasonic machining, sandblasting, laser ablation, spark erosion, and photo lithography.

Unit-5
Teaching Hours:9
MICRO FABRICATION PROCESSES
 

Overview of Micro Machining Technologies, miniaturization, conventional and silicon micro machining techniques, Ultrasonic machining, sandblasting, laser ablation, spark erosion, and photo lithography.

Unit-5
Teaching Hours:9
MICRO FABRICATION PROCESSES
 

Overview of Micro Machining Technologies, miniaturization, conventional and silicon micro machining techniques, Ultrasonic machining, sandblasting, laser ablation, spark erosion, and photo lithography.

Unit-5
Teaching Hours:9
MICRO FABRICATION PROCESSES
 

Overview of Micro Machining Technologies, miniaturization, conventional and silicon micro machining techniques, Ultrasonic machining, sandblasting, laser ablation, spark erosion, and photo lithography.

Unit-5
Teaching Hours:9
MICRO FABRICATION PROCESSES
 

Overview of Micro Machining Technologies, miniaturization, conventional and silicon micro machining techniques, Ultrasonic machining, sandblasting, laser ablation, spark erosion, and photo lithography.

Text Books And Reference Books:

T1. G. K. Anantha Suresh, “Micro and Smart Systems”, Wiley India Pvt. Ltd., 2010.

T2. Banks HT, RC Smith, Y Wang, Massow S A, ‘Smart Materials and Structures’, Paris 1996

Essential Reading / Recommended Reading

R1. G. K. Anantha Suresh, “Micro and Smart Systems”, Wiley India Pvt. Ltd., 2010.

R2. G. K. Anantha Suresh, K. J. Vinoy, S. Gopalakrishnan, K. N. Bhat, V. Kasudev Aatre, “Micro and Smart Systems: Technology and Modeling”, John Wiley & Sons, 2012.

R3. Tai-Ran Hsu, “MEMS and Microsystems: Design and Manufacture”, Tata McGraw Hill

Education Private Limited, 2002.

R4. ‘M V Gandhi and B S Thompson Chapmen & Hall , ‘Smart Materials and Structures’,  London, 1992 (ISBN : 0412370107).

 

Evaluation Pattern

THEORY

Component

Assessed for

Scaled down to

Minimum marks to pass

Maximum marks

CIA-1

20

10

-

10

CIA-2

50

25

-

25

CIA-3

20

10

-

10

Attendance

05

05

-

05

ESE

100

50

20

50

 

TOTAL

100

-

100

MEOE761E05 - BASIC AEROSPACE ENGINEERING (2021 Batch)

Total Teaching Hours for Semester:45
No of Lecture Hours/Week:3
Max Marks:100
Credits:3

Course Objectives/Course Description

 
  • To familiarize with the basics of aerodynamics
  • To familiarize with the basics of aircraft structures, systems & instruments To give exposure to the power plants used in Aircraft and space vehicles

     

     

  • To provide basic knowledge on different methodologies of rocket and aircraft propulsion.
  • To apply the principles of calibration- definition, traceability, precision and physics behind aircraft and system configurations. 

Learning Outcome

CO1: Recall & Articulate the history, evolution and significance of aircraft and helicopters as well as evolution of space travel and classify flying machines resulting from human endeavor in teams, determination, acumen and application knowledge.

CO2: Effectively use International Standard Atmosphere and aerodynamic principles to calculate aerodynamic forces - lift/drag of simple aero foil configurations. To apply principles of mechanics and equations of motion to determine aircraft performance in steady gliding, horizontal and climbing flight.

CO3: To describe important physical features and structural construction of aircraft logically based on loads encountered.

CO4: To Describe and differentiate the aerospace materials of construction and aircraft systems for safe operation and flight of an aircraft to meet the intended roles efficiently

CO5: To distinguish and illustrate different types of aircraft and rocket propulsion arrangements for space exploration and evaluate various operating environmental and safety issues

Unit-1
Teaching Hours:9
Aircraft Configurations
 

Brief History- airplanes and Helicopters – Components of an airplane and their functions. Different types of flightvehicles, classifications, Basic instruments for flying

Unit-1
Teaching Hours:9
Introduction to Principles of Flight
 

Physical properties and structure of the atmosphere, Temperature, pressure and altituderelationships, Evolution of lift, drag and moment, different types of drag.

Unit-1
Teaching Hours:9
Aircraft Configurations
 

Brief History- airplanes and Helicopters – Components of an airplane and their functions. Different types of flightvehicles, classifications, Basic instruments for flying

Unit-1
Teaching Hours:9
Introduction to Principles of Flight
 

Physical properties and structure of the atmosphere, Temperature, pressure and altituderelationships, Evolution of lift, drag and moment, different types of drag.

Unit-1
Teaching Hours:9
Aircraft Configurations
 

Brief History- airplanes and Helicopters – Components of an airplane and their functions. Different types of flightvehicles, classifications, Basic instruments for flying

Unit-1
Teaching Hours:9
Introduction to Principles of Flight
 

Physical properties and structure of the atmosphere, Temperature, pressure and altituderelationships, Evolution of lift, drag and moment, different types of drag.

Unit-1
Teaching Hours:9
Aircraft Configurations
 

Brief History- airplanes and Helicopters – Components of an airplane and their functions. Different types of flightvehicles, classifications, Basic instruments for flying

Unit-1
Teaching Hours:9
Introduction to Principles of Flight
 

Physical properties and structure of the atmosphere, Temperature, pressure and altituderelationships, Evolution of lift, drag and moment, different types of drag.

Unit-1
Teaching Hours:9
Aircraft Configurations
 

Brief History- airplanes and Helicopters – Components of an airplane and their functions. Different types of flightvehicles, classifications, Basic instruments for flying

Unit-1
Teaching Hours:9
Introduction to Principles of Flight
 

Physical properties and structure of the atmosphere, Temperature, pressure and altituderelationships, Evolution of lift, drag and moment, different types of drag.

Unit-1
Teaching Hours:9
Aircraft Configurations
 

Brief History- airplanes and Helicopters – Components of an airplane and their functions. Different types of flightvehicles, classifications, Basic instruments for flying

Unit-1
Teaching Hours:9
Introduction to Principles of Flight
 

Physical properties and structure of the atmosphere, Temperature, pressure and altituderelationships, Evolution of lift, drag and moment, different types of drag.

Unit-1
Teaching Hours:9
Aircraft Configurations
 

Brief History- airplanes and Helicopters – Components of an airplane and their functions. Different types of flightvehicles, classifications, Basic instruments for flying

Unit-1
Teaching Hours:9
Introduction to Principles of Flight
 

Physical properties and structure of the atmosphere, Temperature, pressure and altituderelationships, Evolution of lift, drag and moment, different types of drag.

Unit-1
Teaching Hours:9
Aircraft Configurations
 

Brief History- airplanes and Helicopters – Components of an airplane and their functions. Different types of flightvehicles, classifications, Basic instruments for flying

Unit-1
Teaching Hours:9
Introduction to Principles of Flight
 

Physical properties and structure of the atmosphere, Temperature, pressure and altituderelationships, Evolution of lift, drag and moment, different types of drag.

Unit-2
Teaching Hours:9
Elements of Airplane Performance
 

Introduction, Equation of motion, Thrust required for level unaccelerated flight, Thrust available and maximum velocity, Power required for level unaccelerated flight, Power available and maximum velocity for reciprocating engine – propeller combination and jet engine, Altitude effect of power available and power required. Rate of climb, gliding flight, Absolute and Ceiling, Time of climb, Range & Endurance for propeller driven and jet air plane.

Unit-2
Teaching Hours:9
Introduction to Aerodynamics
 

Aerodynamic forces on aircraft,Basic characteristics of aerofoils, NACA nomenclature, Classification of NACA aerofoils, propagation of sound, Mach number, subsonic, transonic, supersonic, hypersonic flows.

Unit-2
Teaching Hours:9
Elements of Airplane Performance
 

Introduction, Equation of motion, Thrust required for level unaccelerated flight, Thrust available and maximum velocity, Power required for level unaccelerated flight, Power available and maximum velocity for reciprocating engine – propeller combination and jet engine, Altitude effect of power available and power required. Rate of climb, gliding flight, Absolute and Ceiling, Time of climb, Range & Endurance for propeller driven and jet air plane.

Unit-2
Teaching Hours:9
Introduction to Aerodynamics
 

Aerodynamic forces on aircraft,Basic characteristics of aerofoils, NACA nomenclature, Classification of NACA aerofoils, propagation of sound, Mach number, subsonic, transonic, supersonic, hypersonic flows.

Unit-2
Teaching Hours:9
Elements of Airplane Performance
 

Introduction, Equation of motion, Thrust required for level unaccelerated flight, Thrust available and maximum velocity, Power required for level unaccelerated flight, Power available and maximum velocity for reciprocating engine – propeller combination and jet engine, Altitude effect of power available and power required. Rate of climb, gliding flight, Absolute and Ceiling, Time of climb, Range & Endurance for propeller driven and jet air plane.

Unit-2
Teaching Hours:9
Introduction to Aerodynamics
 

Aerodynamic forces on aircraft,Basic characteristics of aerofoils, NACA nomenclature, Classification of NACA aerofoils, propagation of sound, Mach number, subsonic, transonic, supersonic, hypersonic flows.

Unit-2
Teaching Hours:9
Elements of Airplane Performance
 

Introduction, Equation of motion, Thrust required for level unaccelerated flight, Thrust available and maximum velocity, Power required for level unaccelerated flight, Power available and maximum velocity for reciprocating engine – propeller combination and jet engine, Altitude effect of power available and power required. Rate of climb, gliding flight, Absolute and Ceiling, Time of climb, Range & Endurance for propeller driven and jet air plane.

Unit-2
Teaching Hours:9
Introduction to Aerodynamics
 

Aerodynamic forces on aircraft,Basic characteristics of aerofoils, NACA nomenclature, Classification of NACA aerofoils, propagation of sound, Mach number, subsonic, transonic, supersonic, hypersonic flows.

Unit-2
Teaching Hours:9
Elements of Airplane Performance
 

Introduction, Equation of motion, Thrust required for level unaccelerated flight, Thrust available and maximum velocity, Power required for level unaccelerated flight, Power available and maximum velocity for reciprocating engine – propeller combination and jet engine, Altitude effect of power available and power required. Rate of climb, gliding flight, Absolute and Ceiling, Time of climb, Range & Endurance for propeller driven and jet air plane.

Unit-2
Teaching Hours:9
Introduction to Aerodynamics
 

Aerodynamic forces on aircraft,Basic characteristics of aerofoils, NACA nomenclature, Classification of NACA aerofoils, propagation of sound, Mach number, subsonic, transonic, supersonic, hypersonic flows.

Unit-2
Teaching Hours:9
Elements of Airplane Performance
 

Introduction, Equation of motion, Thrust required for level unaccelerated flight, Thrust available and maximum velocity, Power required for level unaccelerated flight, Power available and maximum velocity for reciprocating engine – propeller combination and jet engine, Altitude effect of power available and power required. Rate of climb, gliding flight, Absolute and Ceiling, Time of climb, Range & Endurance for propeller driven and jet air plane.

Unit-2
Teaching Hours:9
Introduction to Aerodynamics
 

Aerodynamic forces on aircraft,Basic characteristics of aerofoils, NACA nomenclature, Classification of NACA aerofoils, propagation of sound, Mach number, subsonic, transonic, supersonic, hypersonic flows.

Unit-2
Teaching Hours:9
Elements of Airplane Performance
 

Introduction, Equation of motion, Thrust required for level unaccelerated flight, Thrust available and maximum velocity, Power required for level unaccelerated flight, Power available and maximum velocity for reciprocating engine – propeller combination and jet engine, Altitude effect of power available and power required. Rate of climb, gliding flight, Absolute and Ceiling, Time of climb, Range & Endurance for propeller driven and jet air plane.

Unit-2
Teaching Hours:9
Introduction to Aerodynamics
 

Aerodynamic forces on aircraft,Basic characteristics of aerofoils, NACA nomenclature, Classification of NACA aerofoils, propagation of sound, Mach number, subsonic, transonic, supersonic, hypersonic flows.

Unit-2
Teaching Hours:9
Elements of Airplane Performance
 

Introduction, Equation of motion, Thrust required for level unaccelerated flight, Thrust available and maximum velocity, Power required for level unaccelerated flight, Power available and maximum velocity for reciprocating engine – propeller combination and jet engine, Altitude effect of power available and power required. Rate of climb, gliding flight, Absolute and Ceiling, Time of climb, Range & Endurance for propeller driven and jet air plane.

Unit-2
Teaching Hours:9
Introduction to Aerodynamics
 

Aerodynamic forces on aircraft,Basic characteristics of aerofoils, NACA nomenclature, Classification of NACA aerofoils, propagation of sound, Mach number, subsonic, transonic, supersonic, hypersonic flows.

Unit-3
Teaching Hours:9
Aircraft Structures
 

General types of construction, Monocoque and Semi-monocoque - construction, Typical wing and fuselage Structures.

 

Unit-3
Teaching Hours:9
Landing Gears
 

Introduction to Landing Gears, Types of Landing Gears.

Unit-3
Teaching Hours:9
Aircraft Structures
 

General types of construction, Monocoque and Semi-monocoque - construction, Typical wing and fuselage Structures.

 

Unit-3
Teaching Hours:9
Landing Gears
 

Introduction to Landing Gears, Types of Landing Gears.

Unit-3
Teaching Hours:9
Aircraft Structures
 

General types of construction, Monocoque and Semi-monocoque - construction, Typical wing and fuselage Structures.

 

Unit-3
Teaching Hours:9
Landing Gears
 

Introduction to Landing Gears, Types of Landing Gears.

Unit-3
Teaching Hours:9
Aircraft Structures
 

General types of construction, Monocoque and Semi-monocoque - construction, Typical wing and fuselage Structures.

 

Unit-3
Teaching Hours:9
Landing Gears
 

Introduction to Landing Gears, Types of Landing Gears.

Unit-3
Teaching Hours:9
Aircraft Structures
 

General types of construction, Monocoque and Semi-monocoque - construction, Typical wing and fuselage Structures.

 

Unit-3
Teaching Hours:9
Landing Gears
 

Introduction to Landing Gears, Types of Landing Gears.

Unit-3
Teaching Hours:9
Aircraft Structures
 

General types of construction, Monocoque and Semi-monocoque - construction, Typical wing and fuselage Structures.

 

Unit-3
Teaching Hours:9
Landing Gears
 

Introduction to Landing Gears, Types of Landing Gears.

Unit-3
Teaching Hours:9
Aircraft Structures
 

General types of construction, Monocoque and Semi-monocoque - construction, Typical wing and fuselage Structures.

 

Unit-3
Teaching Hours:9
Landing Gears
 

Introduction to Landing Gears, Types of Landing Gears.

Unit-3
Teaching Hours:9
Aircraft Structures
 

General types of construction, Monocoque and Semi-monocoque - construction, Typical wing and fuselage Structures.

 

Unit-3
Teaching Hours:9
Landing Gears
 

Introduction to Landing Gears, Types of Landing Gears.

Unit-4
Teaching Hours:9
Systems and Instruments
 

Conventional control, Powered controls, Basic instruments for flying, typical systems for control actuation.

Unit-4
Teaching Hours:9
Aircraft Materials
 

Metallic and non-metallic materials, Use of aluminium alloy, titanium, stainless steel and composite materials.

 

Unit-4
Teaching Hours:9
Systems and Instruments
 

Conventional control, Powered controls, Basic instruments for flying, typical systems for control actuation.

Unit-4
Teaching Hours:9
Aircraft Materials
 

Metallic and non-metallic materials, Use of aluminium alloy, titanium, stainless steel and composite materials.

 

Unit-4
Teaching Hours:9
Systems and Instruments
 

Conventional control, Powered controls, Basic instruments for flying, typical systems for control actuation.

Unit-4
Teaching Hours:9
Aircraft Materials
 

Metallic and non-metallic materials, Use of aluminium alloy, titanium, stainless steel and composite materials.

 

Unit-4
Teaching Hours:9
Systems and Instruments
 

Conventional control, Powered controls, Basic instruments for flying, typical systems for control actuation.

Unit-4
Teaching Hours:9
Aircraft Materials
 

Metallic and non-metallic materials, Use of aluminium alloy, titanium, stainless steel and composite materials.

 

Unit-4
Teaching Hours:9
Systems and Instruments
 

Conventional control, Powered controls, Basic instruments for flying, typical systems for control actuation.

Unit-4
Teaching Hours:9
Aircraft Materials
 

Metallic and non-metallic materials, Use of aluminium alloy, titanium, stainless steel and composite materials.

 

Unit-4
Teaching Hours:9
Systems and Instruments
 

Conventional control, Powered controls, Basic instruments for flying, typical systems for control actuation.

Unit-4
Teaching Hours:9
Aircraft Materials
 

Metallic and non-metallic materials, Use of aluminium alloy, titanium, stainless steel and composite materials.

 

Unit-4
Teaching Hours:9
Systems and Instruments
 

Conventional control, Powered controls, Basic instruments for flying, typical systems for control actuation.

Unit-4
Teaching Hours:9
Aircraft Materials
 

Metallic and non-metallic materials, Use of aluminium alloy, titanium, stainless steel and composite materials.

 

Unit-4
Teaching Hours:9
Systems and Instruments
 

Conventional control, Powered controls, Basic instruments for flying, typical systems for control actuation.

Unit-4
Teaching Hours:9
Aircraft Materials
 

Metallic and non-metallic materials, Use of aluminium alloy, titanium, stainless steel and composite materials.

 

Unit-5
Teaching Hours:9
Jet Propulsion
 

Basic ideas about piston, turboprop and jet engines – comparative merits, Propellers and Jet for thrust production.

Unit-5
Teaching Hours:9
Rocket Propulsion
 

Principle of operation of rocket, types of rocket and typical applications, Exploration into space, Use of multistage rockets.

Unit-5
Teaching Hours:9
Jet Propulsion
 

Basic ideas about piston, turboprop and jet engines – comparative merits, Propellers and Jet for thrust production.

Unit-5
Teaching Hours:9
Rocket Propulsion
 

Principle of operation of rocket, types of rocket and typical applications, Exploration into space, Use of multistage rockets.

Unit-5
Teaching Hours:9
Jet Propulsion
 

Basic ideas about piston, turboprop and jet engines – comparative merits, Propellers and Jet for thrust production.

Unit-5
Teaching Hours:9
Rocket Propulsion
 

Principle of operation of rocket, types of rocket and typical applications, Exploration into space, Use of multistage rockets.

Unit-5
Teaching Hours:9
Jet Propulsion
 

Basic ideas about piston, turboprop and jet engines – comparative merits, Propellers and Jet for thrust production.

Unit-5
Teaching Hours:9
Rocket Propulsion
 

Principle of operation of rocket, types of rocket and typical applications, Exploration into space, Use of multistage rockets.

Unit-5
Teaching Hours:9
Jet Propulsion
 

Basic ideas about piston, turboprop and jet engines – comparative merits, Propellers and Jet for thrust production.

Unit-5
Teaching Hours:9
Rocket Propulsion
 

Principle of operation of rocket, types of rocket and typical applications, Exploration into space, Use of multistage rockets.

Unit-5
Teaching Hours:9
Jet Propulsion
 

Basic ideas about piston, turboprop and jet engines – comparative merits, Propellers and Jet for thrust production.

Unit-5
Teaching Hours:9
Rocket Propulsion
 

Principle of operation of rocket, types of rocket and typical applications, Exploration into space, Use of multistage rockets.

Unit-5
Teaching Hours:9
Jet Propulsion
 

Basic ideas about piston, turboprop and jet engines – comparative merits, Propellers and Jet for thrust production.

Unit-5
Teaching Hours:9
Rocket Propulsion
 

Principle of operation of rocket, types of rocket and typical applications, Exploration into space, Use of multistage rockets.

Unit-5
Teaching Hours:9
Jet Propulsion
 

Basic ideas about piston, turboprop and jet engines – comparative merits, Propellers and Jet for thrust production.

Unit-5
Teaching Hours:9
Rocket Propulsion
 

Principle of operation of rocket, types of rocket and typical applications, Exploration into space, Use of multistage rockets.

Text Books And Reference Books:

1.  Anderson.J.D., Introduction to Flight, McGraw Hill,2010 T

2.  Kermode AC, Mechanics of Flight, Pearson,2004

3. Titterton Aircraft Materials and Processes, 5th Edition , Pitman Publishers, In India Sterling Book House, Mumbai

4. CG Krishnadas Nair, Handbook of Aircraft Materials, Interline Publishing, Bangalore, Copy right ©1993 Aeronautical Society of India

Essential Reading / Recommended Reading

1. Shevell,R.S., Fundamentals of flights, Pearson education 2004
2. McKinley.J.L. and R.D. Bent, Aircraft Power Plants, McGraw Hill1993
3. Pallet.E.H.J. Aircraft Instruments & Principles, Pearson 2010
4. Lalit Gupta and O P Sharma, Fundamentals of Flight Vol-I to Vol-IV, Himalayan Books. 2006 ISBN: 706
5. Kermode,A.C., ‘Flight without Formulae’, Pearson,2004

Evaluation Pattern

THEORY

Component

Assessed for

Scaled down to

Minimum marks to pass

Maximum marks

CIA-1

20

10

-

10

CIA-2

50

25

-

25

CIA-3

20

10

-

10

Attendance

05

05

-

05

ESE

100

50

20

50

 

TOTAL

100

-

100

NCCOE02 - NCC2 (2021 Batch)

Total Teaching Hours for Semester:45
No of Lecture Hours/Week:3
Max Marks:100
Credits:3

Course Objectives/Course Description

 

This Course is offered for cadets of NCC who have successfully completed their 'B' or 'C'- Certificate in NCC.

This Course is offered in Lieu of the Open Elective course offered by the department during the 7th Semester.

·     On Successful Completion of the 'B' or 'C'- Certificate course that is conducted by the NCC Directorate Centrally. Marks will be awarded for 100 marks.

Learning Outcome

CO1: Demonstrate Foot drill, Rifle Drill and ceremonial Drill(L3)

CO2: Illustrate the importance and need for National integration(L2)

CO3: Make use of Leadership traits to organize critical decisions (L3)

CO4: Relate to Social Issues and contribute to the Environmental sustainability (L2)

CO5: Utilize Community Development skills for social wellbeing(L3)

Unit-1
Teaching Hours:9
Drill
 

Foot Drill – Marching Salute- Flight formation- Slow march- Rifle Drill- Guard of honor- Present Arm.

Unit-1
Teaching Hours:9
Drill
 

Foot Drill – Marching Salute- Flight formation- Slow march- Rifle Drill- Guard of honor- Present Arm.

Unit-1
Teaching Hours:9
Drill
 

Foot Drill – Marching Salute- Flight formation- Slow march- Rifle Drill- Guard of honor- Present Arm.

Unit-1
Teaching Hours:9
Drill
 

Foot Drill – Marching Salute- Flight formation- Slow march- Rifle Drill- Guard of honor- Present Arm.

Unit-1
Teaching Hours:9
Drill
 

Foot Drill – Marching Salute- Flight formation- Slow march- Rifle Drill- Guard of honor- Present Arm.

Unit-1
Teaching Hours:9
Drill
 

Foot Drill – Marching Salute- Flight formation- Slow march- Rifle Drill- Guard of honor- Present Arm.

Unit-1
Teaching Hours:9
Drill
 

Foot Drill – Marching Salute- Flight formation- Slow march- Rifle Drill- Guard of honor- Present Arm.

Unit-1
Teaching Hours:9
Drill
 

Foot Drill – Marching Salute- Flight formation- Slow march- Rifle Drill- Guard of honor- Present Arm.

Unit-1
Teaching Hours:9
Drill
 

Foot Drill – Marching Salute- Flight formation- Slow march- Rifle Drill- Guard of honor- Present Arm.

Unit-1
Teaching Hours:9
Drill
 

Foot Drill – Marching Salute- Flight formation- Slow march- Rifle Drill- Guard of honor- Present Arm.

Unit-2
Teaching Hours:9
National Integration
 

Importance & Necessity-Factors Affecting National Integration- Unity in Diversity & Role of NCC in Nation Building- Threats to National Security.

Unit-2
Teaching Hours:9
National Integration
 

Importance & Necessity-Factors Affecting National Integration- Unity in Diversity & Role of NCC in Nation Building- Threats to National Security.

Unit-2
Teaching Hours:9
National Integration
 

Importance & Necessity-Factors Affecting National Integration- Unity in Diversity & Role of NCC in Nation Building- Threats to National Security.

Unit-2
Teaching Hours:9
National Integration
 

Importance & Necessity-Factors Affecting National Integration- Unity in Diversity & Role of NCC in Nation Building- Threats to National Security.

Unit-2
Teaching Hours:9
National Integration
 

Importance & Necessity-Factors Affecting National Integration- Unity in Diversity & Role of NCC in Nation Building- Threats to National Security.

Unit-2
Teaching Hours:9
National Integration
 

Importance & Necessity-Factors Affecting National Integration- Unity in Diversity & Role of NCC in Nation Building- Threats to National Security.

Unit-2
Teaching Hours:9
National Integration
 

Importance & Necessity-Factors Affecting National Integration- Unity in Diversity & Role of NCC in Nation Building- Threats to National Security.

Unit-2
Teaching Hours:9
National Integration
 

Importance & Necessity-Factors Affecting National Integration- Unity in Diversity & Role of NCC in Nation Building- Threats to National Security.

Unit-2
Teaching Hours:9
National Integration
 

Importance & Necessity-Factors Affecting National Integration- Unity in Diversity & Role of NCC in Nation Building- Threats to National Security.

Unit-2
Teaching Hours:9
National Integration
 

Importance & Necessity-Factors Affecting National Integration- Unity in Diversity & Role of NCC in Nation Building- Threats to National Security.

Unit-3
Teaching Hours:9
Leadership
 

Leadership Defined - Ways of Conceptualizing Leadership -Definition and Components- Leadership Described -Trait Versus Process Leadership - Assigned Versus Emergent Leadership -Leadership and Power - Leadership and Coercion- Leadership and Management- The Trait Description

Case Studies: Shivaji, Jhasi Ki Rani

Unit-3
Teaching Hours:9
Leadership
 

Leadership Defined - Ways of Conceptualizing Leadership -Definition and Components- Leadership Described -Trait Versus Process Leadership - Assigned Versus Emergent Leadership -Leadership and Power - Leadership and Coercion- Leadership and Management- The Trait Description

Case Studies: Shivaji, Jhasi Ki Rani

Unit-3
Teaching Hours:9
Leadership
 

Leadership Defined - Ways of Conceptualizing Leadership -Definition and Components- Leadership Described -Trait Versus Process Leadership - Assigned Versus Emergent Leadership -Leadership and Power - Leadership and Coercion- Leadership and Management- The Trait Description

Case Studies: Shivaji, Jhasi Ki Rani

Unit-3
Teaching Hours:9
Leadership
 

Leadership Defined - Ways of Conceptualizing Leadership -Definition and Components- Leadership Described -Trait Versus Process Leadership - Assigned Versus Emergent Leadership -Leadership and Power - Leadership and Coercion- Leadership and Management- The Trait Description

Case Studies: Shivaji, Jhasi Ki Rani

Unit-3
Teaching Hours:9
Leadership
 

Leadership Defined - Ways of Conceptualizing Leadership -Definition and Components- Leadership Described -Trait Versus Process Leadership - Assigned Versus Emergent Leadership -Leadership and Power - Leadership and Coercion- Leadership and Management- The Trait Description

Case Studies: Shivaji, Jhasi Ki Rani

Unit-3
Teaching Hours:9
Leadership
 

Leadership Defined - Ways of Conceptualizing Leadership -Definition and Components- Leadership Described -Trait Versus Process Leadership - Assigned Versus Emergent Leadership -Leadership and Power - Leadership and Coercion- Leadership and Management- The Trait Description

Case Studies: Shivaji, Jhasi Ki Rani

Unit-3
Teaching Hours:9
Leadership
 

Leadership Defined - Ways of Conceptualizing Leadership -Definition and Components- Leadership Described -Trait Versus Process Leadership - Assigned Versus Emergent Leadership -Leadership and Power - Leadership and Coercion- Leadership and Management- The Trait Description

Case Studies: Shivaji, Jhasi Ki Rani

Unit-3
Teaching Hours:9
Leadership
 

Leadership Defined - Ways of Conceptualizing Leadership -Definition and Components- Leadership Described -Trait Versus Process Leadership - Assigned Versus Emergent Leadership -Leadership and Power - Leadership and Coercion- Leadership and Management- The Trait Description

Case Studies: Shivaji, Jhasi Ki Rani

Unit-3
Teaching Hours:9
Leadership
 

Leadership Defined - Ways of Conceptualizing Leadership -Definition and Components- Leadership Described -Trait Versus Process Leadership - Assigned Versus Emergent Leadership -Leadership and Power - Leadership and Coercion- Leadership and Management- The Trait Description

Case Studies: Shivaji, Jhasi Ki Rani

Unit-3
Teaching Hours:9
Leadership
 

Leadership Defined - Ways of Conceptualizing Leadership -Definition and Components- Leadership Described -Trait Versus Process Leadership - Assigned Versus Emergent Leadership -Leadership and Power - Leadership and Coercion- Leadership and Management- The Trait Description

Case Studies: Shivaji, Jhasi Ki Rani

Unit-4
Teaching Hours:9
Social Issues and the Environment
 

Resettlement and rehabilitation of people - environmental ethics: issues and possible solutions - nuclear accidents and nuclear holocaust -wasteland reclamation consumerism and waste products.

Environment protection act air (prevention and control of pollution) act 194- water (prevention and control of pollution) ACT 196

Unit-4
Teaching Hours:9
Social Issues and the Environment
 

Resettlement and rehabilitation of people - environmental ethics: issues and possible solutions - nuclear accidents and nuclear holocaust -wasteland reclamation consumerism and waste products.

Environment protection act air (prevention and control of pollution) act 194- water (prevention and control of pollution) ACT 196

Unit-4
Teaching Hours:9
Social Issues and the Environment
 

Resettlement and rehabilitation of people - environmental ethics: issues and possible solutions - nuclear accidents and nuclear holocaust -wasteland reclamation consumerism and waste products.

Environment protection act air (prevention and control of pollution) act 194- water (prevention and control of pollution) ACT 196

Unit-4
Teaching Hours:9
Social Issues and the Environment
 

Resettlement and rehabilitation of people - environmental ethics: issues and possible solutions - nuclear accidents and nuclear holocaust -wasteland reclamation consumerism and waste products.

Environment protection act air (prevention and control of pollution) act 194- water (prevention and control of pollution) ACT 196

Unit-4
Teaching Hours:9
Social Issues and the Environment
 

Resettlement and rehabilitation of people - environmental ethics: issues and possible solutions - nuclear accidents and nuclear holocaust -wasteland reclamation consumerism and waste products.

Environment protection act air (prevention and control of pollution) act 194- water (prevention and control of pollution) ACT 196

Unit-4
Teaching Hours:9
Social Issues and the Environment
 

Resettlement and rehabilitation of people - environmental ethics: issues and possible solutions - nuclear accidents and nuclear holocaust -wasteland reclamation consumerism and waste products.

Environment protection act air (prevention and control of pollution) act 194- water (prevention and control of pollution) ACT 196

Unit-4
Teaching Hours:9
Social Issues and the Environment
 

Resettlement and rehabilitation of people - environmental ethics: issues and possible solutions - nuclear accidents and nuclear holocaust -wasteland reclamation consumerism and waste products.

Environment protection act air (prevention and control of pollution) act 194- water (prevention and control of pollution) ACT 196

Unit-4
Teaching Hours:9
Social Issues and the Environment
 

Resettlement and rehabilitation of people - environmental ethics: issues and possible solutions - nuclear accidents and nuclear holocaust -wasteland reclamation consumerism and waste products.

Environment protection act air (prevention and control of pollution) act 194- water (prevention and control of pollution) ACT 196

Unit-4
Teaching Hours:9
Social Issues and the Environment
 

Resettlement and rehabilitation of people - environmental ethics: issues and possible solutions - nuclear accidents and nuclear holocaust -wasteland reclamation consumerism and waste products.

Environment protection act air (prevention and control of pollution) act 194- water (prevention and control of pollution) ACT 196

Unit-4
Teaching Hours:9
Social Issues and the Environment
 

Resettlement and rehabilitation of people - environmental ethics: issues and possible solutions - nuclear accidents and nuclear holocaust -wasteland reclamation consumerism and waste products.

Environment protection act air (prevention and control of pollution) act 194- water (prevention and control of pollution) ACT 196

Unit-5
Teaching Hours:9
Community Development
 

Contribution of Youth- Social Evils- Protection of Children & Women Safety- Cyber and Mobile Security Awareness - Hygiene and Sanitation (Personal and Camp).

Unit-5
Teaching Hours:9
Community Development
 

Contribution of Youth- Social Evils- Protection of Children & Women Safety- Cyber and Mobile Security Awareness - Hygiene and Sanitation (Personal and Camp).

Unit-5
Teaching Hours:9
Community Development
 

Contribution of Youth- Social Evils- Protection of Children & Women Safety- Cyber and Mobile Security Awareness - Hygiene and Sanitation (Personal and Camp).

Unit-5
Teaching Hours:9
Community Development
 

Contribution of Youth- Social Evils- Protection of Children & Women Safety- Cyber and Mobile Security Awareness - Hygiene and Sanitation (Personal and Camp).

Unit-5
Teaching Hours:9
Community Development
 

Contribution of Youth- Social Evils- Protection of Children & Women Safety- Cyber and Mobile Security Awareness - Hygiene and Sanitation (Personal and Camp).

Unit-5
Teaching Hours:9
Community Development
 

Contribution of Youth- Social Evils- Protection of Children & Women Safety- Cyber and Mobile Security Awareness - Hygiene and Sanitation (Personal and Camp).

Unit-5
Teaching Hours:9
Community Development
 

Contribution of Youth- Social Evils- Protection of Children & Women Safety- Cyber and Mobile Security Awareness - Hygiene and Sanitation (Personal and Camp).

Unit-5
Teaching Hours:9
Community Development
 

Contribution of Youth- Social Evils- Protection of Children & Women Safety- Cyber and Mobile Security Awareness - Hygiene and Sanitation (Personal and Camp).

Unit-5
Teaching Hours:9
Community Development
 

Contribution of Youth- Social Evils- Protection of Children & Women Safety- Cyber and Mobile Security Awareness - Hygiene and Sanitation (Personal and Camp).

Unit-5
Teaching Hours:9
Community Development
 

Contribution of Youth- Social Evils- Protection of Children & Women Safety- Cyber and Mobile Security Awareness - Hygiene and Sanitation (Personal and Camp).

Text Books And Reference Books:

Airwing Cadet Handbook, Common Subject SD/SW, Maxwell Press, 2015.

Essential Reading / Recommended Reading

Textbook of Environmental Studies for Undergraduate Courses, Erach Barucha, Orient Black swan Pvt Ltd, 2nd edition, march 2021

Evaluation Pattern

The assessment will be carried out as overall internal assessment at the end of the semester for 100 marks based on the following.

·       Each cadet will appear for  'B' or 'C'- Certificate exam which is centrally conducted by the Ministry of Defense, NCC directorate. The Total marks will be for 350.

·       Each cadets score will be normalized to a maximum of 100 marks based on the overall marks Secured by each cadet.  

 

PHOE761E01 - NANO MATERIALS AND NANOTECHNOLOGY (2021 Batch)

Total Teaching Hours for Semester:45
No of Lecture Hours/Week:3
Max Marks:100
Credits:3

Course Objectives/Course Description

 

Course Description:

     To distinguish between the concept of bulk and nanomaterials, understand the science of different synthesis methods and characterization of nano materials; analyze physical and chemical properties of different types of nanomaterials and to understand various types of application of nanotechnology in engineering and sciences.

 Course Objective:

·         To distinguish between the concept of bulk and nanomaterials.

·         To understand the science of different synthesis methods and characterization of nanomaterials.

·         To analyze physical and chemical properties of different types of nanomaterials.

·         To understand various types of application of nanotechnology in engineering and sciences.

Learning Outcome

CO1: Students will be able to explain the basics of Nanomaterials {L2} {PO1, PO2}

CO2: Students will be able to outline the science of different synthesis methods and characterization of nanomaterials. {L2} { PO1, PO2}

CO3: Students will be able to analyze physical and chemical properties of different types of nanomaterials {L4} { PO1, PO2, PO3}

CO4: Students will be able to explain the basic concepts of Carbon nano tubes{L2} {PO1, PO2}

CO5: Students will be able to illustrate the applications of nanotechnology in engineering and sciences. {L3} { PO1, PO2, PO3, PO4} close

Unit-1
Teaching Hours:8
Introduction
 

Definition  of  Nano,  Atomic  Structure  and atomic size, Emergence and challenges of nanoscience and nanotechnology, influence  of  nano  over  micro/macro,  size  effects  and  crystals, large surface to volume ratio, surface effects on the properties, One   dimensional, Two dimensional  and  Three  dimensional  nanostructured  materials, Examples of nano systems

Unit-1
Teaching Hours:8
Introduction
 

Definition  of  Nano,  Atomic  Structure  and atomic size, Emergence and challenges of nanoscience and nanotechnology, influence  of  nano  over  micro/macro,  size  effects  and  crystals, large surface to volume ratio, surface effects on the properties, One   dimensional, Two dimensional  and  Three  dimensional  nanostructured  materials, Examples of nano systems

Unit-1
Teaching Hours:8
Introduction
 

Definition  of  Nano,  Atomic  Structure  and atomic size, Emergence and challenges of nanoscience and nanotechnology, influence  of  nano  over  micro/macro,  size  effects  and  crystals, large surface to volume ratio, surface effects on the properties, One   dimensional, Two dimensional  and  Three  dimensional  nanostructured  materials, Examples of nano systems

Unit-1
Teaching Hours:8
Introduction
 

Definition  of  Nano,  Atomic  Structure  and atomic size, Emergence and challenges of nanoscience and nanotechnology, influence  of  nano  over  micro/macro,  size  effects  and  crystals, large surface to volume ratio, surface effects on the properties, One   dimensional, Two dimensional  and  Three  dimensional  nanostructured  materials, Examples of nano systems

Unit-1
Teaching Hours:8
Introduction
 

Definition  of  Nano,  Atomic  Structure  and atomic size, Emergence and challenges of nanoscience and nanotechnology, influence  of  nano  over  micro/macro,  size  effects  and  crystals, large surface to volume ratio, surface effects on the properties, One   dimensional, Two dimensional  and  Three  dimensional  nanostructured  materials, Examples of nano systems

Unit-1
Teaching Hours:8
Introduction
 

Definition  of  Nano,  Atomic  Structure  and atomic size, Emergence and challenges of nanoscience and nanotechnology, influence  of  nano  over  micro/macro,  size  effects  and  crystals, large surface to volume ratio, surface effects on the properties, One   dimensional, Two dimensional  and  Three  dimensional  nanostructured  materials, Examples of nano systems

Unit-1
Teaching Hours:8
Introduction
 

Definition  of  Nano,  Atomic  Structure  and atomic size, Emergence and challenges of nanoscience and nanotechnology, influence  of  nano  over  micro/macro,  size  effects  and  crystals, large surface to volume ratio, surface effects on the properties, One   dimensional, Two dimensional  and  Three  dimensional  nanostructured  materials, Examples of nano systems

Unit-1
Teaching Hours:8
Introduction
 

Definition  of  Nano,  Atomic  Structure  and atomic size, Emergence and challenges of nanoscience and nanotechnology, influence  of  nano  over  micro/macro,  size  effects  and  crystals, large surface to volume ratio, surface effects on the properties, One   dimensional, Two dimensional  and  Three  dimensional  nanostructured  materials, Examples of nano systems

Unit-2
Teaching Hours:9
Synthesis of nanomaterials
 

Bottom-up approaches for nanostructure fabrication: Sol-gel method, Top down approaches for nanostructure fabrication: Ball milling, Lithography, melt quenching and annealing. Self Assembled Monolayers (SAM), Chemical Vapour Deposition (CVD), Spin coating.

Unit-2
Teaching Hours:9
Synthesis of nanomaterials
 

Bottom-up approaches for nanostructure fabrication: Sol-gel method, Top down approaches for nanostructure fabrication: Ball milling, Lithography, melt quenching and annealing. Self Assembled Monolayers (SAM), Chemical Vapour Deposition (CVD), Spin coating.

Unit-2
Teaching Hours:9
Synthesis of nanomaterials
 

Bottom-up approaches for nanostructure fabrication: Sol-gel method, Top down approaches for nanostructure fabrication: Ball milling, Lithography, melt quenching and annealing. Self Assembled Monolayers (SAM), Chemical Vapour Deposition (CVD), Spin coating.

Unit-2
Teaching Hours:9
Synthesis of nanomaterials
 

Bottom-up approaches for nanostructure fabrication: Sol-gel method, Top down approaches for nanostructure fabrication: Ball milling, Lithography, melt quenching and annealing. Self Assembled Monolayers (SAM), Chemical Vapour Deposition (CVD), Spin coating.

Unit-2
Teaching Hours:9
Synthesis of nanomaterials
 

Bottom-up approaches for nanostructure fabrication: Sol-gel method, Top down approaches for nanostructure fabrication: Ball milling, Lithography, melt quenching and annealing. Self Assembled Monolayers (SAM), Chemical Vapour Deposition (CVD), Spin coating.

Unit-2
Teaching Hours:9
Synthesis of nanomaterials
 

Bottom-up approaches for nanostructure fabrication: Sol-gel method, Top down approaches for nanostructure fabrication: Ball milling, Lithography, melt quenching and annealing. Self Assembled Monolayers (SAM), Chemical Vapour Deposition (CVD), Spin coating.

Unit-2
Teaching Hours:9
Synthesis of nanomaterials
 

Bottom-up approaches for nanostructure fabrication: Sol-gel method, Top down approaches for nanostructure fabrication: Ball milling, Lithography, melt quenching and annealing. Self Assembled Monolayers (SAM), Chemical Vapour Deposition (CVD), Spin coating.

Unit-2
Teaching Hours:9
Synthesis of nanomaterials
 

Bottom-up approaches for nanostructure fabrication: Sol-gel method, Top down approaches for nanostructure fabrication: Ball milling, Lithography, melt quenching and annealing. Self Assembled Monolayers (SAM), Chemical Vapour Deposition (CVD), Spin coating.

Unit-3
Teaching Hours:9
Characterization of nanomaterials
 

X-ray   diffraction, particle size analyses using-Scherer`s formula, Scanning  Electron  Microscope  (SEM) –Field  Emission  Scanning  Electron Microscope (FESEM)- Atomic  Force  Microscopy  (AFM  ),  Transmission Electron Microscopy (TEM).

Unit-3
Teaching Hours:9
Characterization of nanomaterials
 

X-ray   diffraction, particle size analyses using-Scherer`s formula, Scanning  Electron  Microscope  (SEM) –Field  Emission  Scanning  Electron Microscope (FESEM)- Atomic  Force  Microscopy  (AFM  ),  Transmission Electron Microscopy (TEM).

Unit-3
Teaching Hours:9
Characterization of nanomaterials
 

X-ray   diffraction, particle size analyses using-Scherer`s formula, Scanning  Electron  Microscope  (SEM) –Field  Emission  Scanning  Electron Microscope (FESEM)- Atomic  Force  Microscopy  (AFM  ),  Transmission Electron Microscopy (TEM).

Unit-3
Teaching Hours:9
Characterization of nanomaterials
 

X-ray   diffraction, particle size analyses using-Scherer`s formula, Scanning  Electron  Microscope  (SEM) –Field  Emission  Scanning  Electron Microscope (FESEM)- Atomic  Force  Microscopy  (AFM  ),  Transmission Electron Microscopy (TEM).

Unit-3
Teaching Hours:9
Characterization of nanomaterials
 

X-ray   diffraction, particle size analyses using-Scherer`s formula, Scanning  Electron  Microscope  (SEM) –Field  Emission  Scanning  Electron Microscope (FESEM)- Atomic  Force  Microscopy  (AFM  ),  Transmission Electron Microscopy (TEM).

Unit-3
Teaching Hours:9
Characterization of nanomaterials
 

X-ray   diffraction, particle size analyses using-Scherer`s formula, Scanning  Electron  Microscope  (SEM) –Field  Emission  Scanning  Electron Microscope (FESEM)- Atomic  Force  Microscopy  (AFM  ),  Transmission Electron Microscopy (TEM).

Unit-3
Teaching Hours:9
Characterization of nanomaterials
 

X-ray   diffraction, particle size analyses using-Scherer`s formula, Scanning  Electron  Microscope  (SEM) –Field  Emission  Scanning  Electron Microscope (FESEM)- Atomic  Force  Microscopy  (AFM  ),  Transmission Electron Microscopy (TEM).

Unit-3
Teaching Hours:9
Characterization of nanomaterials
 

X-ray   diffraction, particle size analyses using-Scherer`s formula, Scanning  Electron  Microscope  (SEM) –Field  Emission  Scanning  Electron Microscope (FESEM)- Atomic  Force  Microscopy  (AFM  ),  Transmission Electron Microscopy (TEM).

Unit-4
Teaching Hours:9
Nanomaterials
 

Microemulsions, colloidal material, nanocomposite polymers, Metal Oxide Nanoparticle, Semiconductor nanostructures, Polymer membranes, carbon nanotubes (CNT’s), single-and  multi-walled CNT – nanowires, graphene, Nanomagnetic   materials

Unit-4
Teaching Hours:9
Nanomaterials
 

Microemulsions, colloidal material, nanocomposite polymers, Metal Oxide Nanoparticle, Semiconductor nanostructures, Polymer membranes, carbon nanotubes (CNT’s), single-and  multi-walled CNT – nanowires, graphene, Nanomagnetic   materials

Unit-4
Teaching Hours:9
Nanomaterials
 

Microemulsions, colloidal material, nanocomposite polymers, Metal Oxide Nanoparticle, Semiconductor nanostructures, Polymer membranes, carbon nanotubes (CNT’s), single-and  multi-walled CNT – nanowires, graphene, Nanomagnetic   materials

Unit-4
Teaching Hours:9
Nanomaterials
 

Microemulsions, colloidal material, nanocomposite polymers, Metal Oxide Nanoparticle, Semiconductor nanostructures, Polymer membranes, carbon nanotubes (CNT’s), single-and  multi-walled CNT – nanowires, graphene, Nanomagnetic   materials

Unit-4
Teaching Hours:9
Nanomaterials
 

Microemulsions, colloidal material, nanocomposite polymers, Metal Oxide Nanoparticle, Semiconductor nanostructures, Polymer membranes, carbon nanotubes (CNT’s), single-and  multi-walled CNT – nanowires, graphene, Nanomagnetic   materials

Unit-4
Teaching Hours:9
Nanomaterials
 

Microemulsions, colloidal material, nanocomposite polymers, Metal Oxide Nanoparticle, Semiconductor nanostructures, Polymer membranes, carbon nanotubes (CNT’s), single-and  multi-walled CNT – nanowires, graphene, Nanomagnetic   materials

Unit-4
Teaching Hours:9
Nanomaterials
 

Microemulsions, colloidal material, nanocomposite polymers, Metal Oxide Nanoparticle, Semiconductor nanostructures, Polymer membranes, carbon nanotubes (CNT’s), single-and  multi-walled CNT – nanowires, graphene, Nanomagnetic   materials

Unit-4
Teaching Hours:9
Nanomaterials
 

Microemulsions, colloidal material, nanocomposite polymers, Metal Oxide Nanoparticle, Semiconductor nanostructures, Polymer membranes, carbon nanotubes (CNT’s), single-and  multi-walled CNT – nanowires, graphene, Nanomagnetic   materials

Unit-5
Teaching Hours:10
Applications
 

Molecular electronics and nanoelectronics, environmental applications, super hydrophilic hydrophobic surfaces, self-cleaning surfaces, membrane-based application, polymer based application. Nanotechnology based water treatment & purification. Catalytic applications-Fuel Cells.Carbon Nanotubes for energy storage.

Unit-5
Teaching Hours:10
Applications
 

Molecular electronics and nanoelectronics, environmental applications, super hydrophilic hydrophobic surfaces, self-cleaning surfaces, membrane-based application, polymer based application. Nanotechnology based water treatment & purification. Catalytic applications-Fuel Cells.Carbon Nanotubes for energy storage.

Unit-5
Teaching Hours:10
Applications
 

Molecular electronics and nanoelectronics, environmental applications, super hydrophilic hydrophobic surfaces, self-cleaning surfaces, membrane-based application, polymer based application. Nanotechnology based water treatment & purification. Catalytic applications-Fuel Cells.Carbon Nanotubes for energy storage.

Unit-5
Teaching Hours:10
Applications
 

Molecular electronics and nanoelectronics, environmental applications, super hydrophilic hydrophobic surfaces, self-cleaning surfaces, membrane-based application, polymer based application. Nanotechnology based water treatment & purification. Catalytic applications-Fuel Cells.Carbon Nanotubes for energy storage.

Unit-5
Teaching Hours:10
Applications
 

Molecular electronics and nanoelectronics, environmental applications, super hydrophilic hydrophobic surfaces, self-cleaning surfaces, membrane-based application, polymer based application. Nanotechnology based water treatment & purification. Catalytic applications-Fuel Cells.Carbon Nanotubes for energy storage.

Unit-5
Teaching Hours:10
Applications
 

Molecular electronics and nanoelectronics, environmental applications, super hydrophilic hydrophobic surfaces, self-cleaning surfaces, membrane-based application, polymer based application. Nanotechnology based water treatment & purification. Catalytic applications-Fuel Cells.Carbon Nanotubes for energy storage.

Unit-5
Teaching Hours:10
Applications
 

Molecular electronics and nanoelectronics, environmental applications, super hydrophilic hydrophobic surfaces, self-cleaning surfaces, membrane-based application, polymer based application. Nanotechnology based water treatment & purification. Catalytic applications-Fuel Cells.Carbon Nanotubes for energy storage.

Unit-5
Teaching Hours:10
Applications
 

Molecular electronics and nanoelectronics, environmental applications, super hydrophilic hydrophobic surfaces, self-cleaning surfaces, membrane-based application, polymer based application. Nanotechnology based water treatment & purification. Catalytic applications-Fuel Cells.Carbon Nanotubes for energy storage.

Text Books And Reference Books:

 1. Processing & properties of structural naonmaterials ‐Leon L. Shaw, Nano chemistry: A Chemical Approach to Nanomaterials, Royal Society of Chemistry, Cambridge UK 2005.

 2. Nanoparticles: From theory to applications – G. Schmidt, Wiley Weinheim 2004.

 3. Advances in Nanotechnology and the Environment, Juyoung Kim, CRC Press, Taylor and Francis Group.

 4. W. Gaddand, D.Brenner, S.Lysherski and G.J.Infrate (Eds), Handbook of nanoscience, Engg. and Technology, CRC Press,2002.

 5. G. Cao, Naostructures and Nanomaterials: Synthesis, properties and applications, Imperical College Press, 2004.

6. Ghuzang  G.Cao,  Naostructures  and  Nanomaterials:  Synthesis,  properties  and  applications,  Imperical College Press, 2004

Essential Reading / Recommended Reading

 1. Chemistry of nano materials: Synthesis, properties and applications by C. N. R. Rao et. al.

2. Environmental Chemistry for a Sustainable World, Volume 1: Nanotechnology and Health RiskEditors: Lichtfouse, Schwarzbauer, Robert.

3. C.N.R. Rao, A. Muller, A.K.Cheetham (Eds), The chemistry of nanomaterials: Synthesis, properties and applications, Wiley VCH Verlag Gmbh&Co, Weinheim, 2004.

Evaluation Pattern

CIA I - 20 Marks - 2 components
Test 1 - UNIT 1 - 10 Marks
Test 2 - UNIT 2 - 10 Marks

 

CIA II - Mid Sem Exam - 50 marks

 

CIA III - 20 Marks - Mooc Course/Project/Test

 

ELC841E05 - HIGH SPEED NETWORKS (2021 Batch)

Total Teaching Hours for Semester:45
No of Lecture Hours/Week:3
Max Marks:100
Credits:3

Course Objectives/Course Description

 

This course aims to highlight the features of different technologies involved in High Speed Networking and their performance with respect to congestion and traffic management. The course also introduces the Quality of Service aspect required in networking

Learning Outcome

CO1: Understand the architecture of high speed networks including frame relay, Ethernet and wireless LAN

CO2: Describe the queuing models used in traffic management and congestion control

CO3: Explain techniques involved to support real-time traffic and congestion control in ATM networks

CO4: Differentiate the integrated and differentiated services models

CO5: Distinguish levels of quality of service (QoS) to networking applications

Unit-1
Teaching Hours:9
HIGH SPEED NETWORKS
 

Frame Relay Networks – Asynchronous transfer mode – ATM Protocol Architecture, ATM logical Connection, ATM Cell – ATM Service Categories – AAL.

High Speed LANs: Fast Ethernet, Gigabit Ethernet, Fiber Channel – Wireless LANs: applications, requirements – Architecture of 802.11

Unit-2
Teaching Hours:9
CONGESTION AND TRAFFIC MANAGEMENT
 

Queuing Analysis- Queuing Models – Single Server Queues – Effects of Congestion – Congestion Control – Traffic Management – Congestion Control in Packet Switching Networks – Frame Relay Congestion Control.

Unit-3
Teaching Hours:9
TCP AND ATM CONGESTION CONTROL
 

TCP Flow control – TCP Congestion Control – Retransmission – Timer Management – Exponential RTO backoff – KARN’s Algorithm – Window management – Performance of TCP over ATM.

Traffic and Congestion control in ATM – Requirements – Attributes – Traffic Management Frame work, Traffic Control – ABR traffic Management – ABR rate control, RM cell formats, ABR Capacity allocations – GFR traffic management.

Unit-4
Teaching Hours:9
INTEGRATED AND DIFFERENTIATED SERVICES
 

Integrated Services Architecture – Approach, Components, Services- Queuing Discipline, FQ, PS, BRFQ, GPS, WFQ – Random Early Detection, Differentiated Services

Unit-5
Teaching Hours:9
PROTOCOLS FOR QOS SUPPORT
 

RSVP – Goals & Characteristics, Data Flow, RSVP operations, Protocol Mechanisms – Multiprotocol Label Switching – Operations, Label Stacking, Protocol details – RTP – Protocol Architecture, Data Transfer Protocol, RTCP.

Text Books And Reference Books:
  1. William Stallings, “HIGH SPEED NETWORKS AND INTERNET”, Pearson Education, Second Edition, 2002.
Essential Reading / Recommended Reading
  1. Warland & Pravin Varaiya, “HIGH PERFORMANCE COMMUNICATION NETWORKS”, Jean Harcourt Asia Pvt. Ltd., II Edition, 2001.
  2. Irvan Pepelnjk, Jim Guichard and Jeff Apcar, “MPLS and VPN architecture”, Cisco Press, Volume 1 and 2, 2003
Evaluation Pattern

CIA-1 Evaluated out of

CIA-2 Evaluated out of

CIA-3 Evaluated out of

Total CIA Marks Reduced to

Attendance

ESE

ESE Reduced to

Total

20 Marks

50 Marks

20 Marks

45 Marks

5 Marks

100 Marks

50 Marks

100 Marks

ELC881 - PROJECT WORK PHASE II (2021 Batch)

Total Teaching Hours for Semester:90
No of Lecture Hours/Week:12
Max Marks:100
Credits:6

Course Objectives/Course Description

 

Apply theoretical concepts for real-time engineering problem solving

 

Learning Outcome

CO1: Develop and design of prototype and product

Unit-1
Teaching Hours:90
Unit 1
 

unit 1

Text Books And Reference Books:

Nil

Essential Reading / Recommended Reading

Nil

   

Evaluation Pattern

Project work may be assigned to a single student (with due approval from department) or to a group of students not exceeding 4 per group.

Maximum Marks = 200

  • Continuous Assessment 100 and the
  • End Semester Examination (project report evaluation and viva-voce) : 100 marks.
  • The continuous assessment and End Semester Examinations marks for Project Work and the Viva-Voce Examination will be distributed as indicated below.

CIA 100 MARKS

ESE 100 MARKS

REVIEW 1

REVIEW 2

REVIEW 3

 

REVIEW COMMITTEE

GUIDE

REVIEW COMMITTEE

GUIDE

REVIEW COMMITTEE

GUIDE

EXAMINERS

20

05

20

10

20

25

100

TOTAL

25

TOTAL

30

TOTAL

45

 

  • There shall be 3 review and the student shall make presentation on the progress made before the committee constituted by the Department
  • The total marks obtained in the 3 reviews shall be 100 marks.

 

ESE 100 MARKS IS EVALUATED AS

 

  • Initial Write Up          : 15 marks
  • Viva Voce                   : 25 marks
  • Demonstration           : 35 marks
  • Project Report                        : 25 marks